
SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 1 G Sunil Kumar, Assistant Professor

UNIT-1

Ruby Introduction:

 Ruby is an open-source object-oriented scripting language invented in

the mid-90s by Yukihiro Matsumoto.

 Unlike languages such as C and C++, a scripting language doesn’t talk

directly to hardware. It’s written to a text file and then parsed by an

interpreter and turned into code. These programs are generally

procedural in nature, meaning they are read from top to bottom.

 Object-oriented languages, on the other hand, break out pieces of code

into objects that can be created and used as needed. You can reuse these

objects in other parts of the program, or even other applications.

 Yukihiro wanted to create a scripting language that leveraged object-

oriented programming and increase code reuse to help speed up

development. And so the Ruby programming language was born, using

simple language and syntax to handle data and logic to solve problems.

 The Ruby programming language is a highly portable general-

purpose language that serves many purposes.

1. Ruby is great for building desktop applications,static

websites, data processing services and also automation

tools.

2. It’s used for web servers, DevOps, and web scraping and

crawling.

 when you add in the functionality of the Rails application

framework, you can do even more, especially database-driven web

applications.

How Ruby on Rails?

 Ruby stands alone as a high-level programming language.

 Ruby on Rails is the application framework that boosted its

popularity and made it a great language for the cloud.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 2 G Sunil Kumar, Assistant Professor

 Ruby on Rails is “an open-source web framework that is

optimized for programmer happiness and sustainable

productivity.”

 The Ruby on Rails framework consists of pre-written Ruby

code for things like communication, file handling, database

connections, and more.

 There are over a million websites written in Ruby on Rails —

a wide range of heavy-hitting business and entertainment

sites, including GitHub, Twitch, Bloomberg, SoundCloud,

Hulu, Square, Basecamp, Airbnb, Hulu, The Weather

Channel, Instacart, and Twitter.

 Ruby Ruby on Rails

 What it is A language A framework

 What inspired it Perl, Smalltalk Django

 What it’s written in C Ruby

 What it’s used for Desktop apps, static sites Data-driven web
 apps,marketplaces

Ruby vs. Python

 One of the languages Ruby gets compared to most often is

Python.

 Ruby and Python have a lot in common and can be used for

many of the same purposes, which can make it hard for

developers who are deciding which language to learn or

which to use for a specific project.

 Both Ruby and Python are high-level server-side scripting

languages with clear and easy-to-read syntax, but there are

some important technical differences.

Differences between Ruby vs Python

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 3 G Sunil Kumar, Assistant Professor

Some of the differences between Ruby vs Python include:

 1. Python supports multiple IDEs, whereas Ruby supports

only EclipseIDE.

 2. With Python you’re limited to the Django framework; with

Ruby, you’re limited to Rails.

 3. Ruby uses a powerful blocks feature, but Python offers

more libraries.

 4. Ruby is a true object-oriented language, but Python has

more traction among data scientists.

 Why should I learn Ruby?

 1. The Ruby programming language is designed for

programmer productivity & Easy for Developers

 2. it’s high level and has a simple syntax.

 3. Developer can write code with in less time and can focus

on finding a solution to your problem.

Note: While many low-level languages require lines and lines of code for

the smallest thing, with Ruby, you can write your first cloud application

in just a few hours.

Survey Reports on Ruby

 The 2020 Stack Overflow Developer Survey names Ruby the

14th most popular programming language in the world with

7.1% of respondents being Ruby on Rails developers.

 It’s also an excellent choice for building applications quickly

and definitely has the edge over Python when it comes to

web development. Hundreds of thousands of Ruby websites

are running across the world.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 4 G Sunil Kumar, Assistant Professor

The structure and Execution of Ruby Programs:

Ruby Arrays

Literals of Ruby Array are created by placing a comma-separated series
of object references between the square brackets. A trailing comma is

ignored.

Example

#!/usr/bin/ruby

ary = ["fred", 10, 3.14, "This is a string", "last

element",]

ary.each do |i|

 puts i

end

This will produce the following result −

fred

10

3.14

This is a string

last element

Ruby Hashes

A literal Ruby Hash is created by placing a list of key/value pairs

between braces, with either a comma or the sequence => between the key

and the value. A trailing comma is ignored.

Example

#!/usr/bin/ruby

hsh = colors = { "red" => 0xf00, "green" => 0x0f0,

"blue" => 0x00f }

hsh.each do |key, value|

 print key, " is ", value, "\n"

end

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 5 G Sunil Kumar, Assistant Professor

This will produce the following result −

red is 3840

green is 240

blue is 15

Ruby Ranges:

A Range represents an interval which is a set of values with a start and
an end. Ranges may be constructed using the s..e and s...e literals, or

with Range.new.

Ranges constructed using .. run from the start to the end inclusively.

Those created using ... exclude the end value. When used as an iterator,

ranges return each value in the sequence.

A range (1..5) means it includes 1, 2, 3, 4, 5 values and a range (1...5)

means it includes 1, 2, 3, 4 values.

 Example
#!/usr/bin/ruby

(10..15).each do |n|

 print n, ' '

end

This will produce the following result −

10 11 12 13 14 15

Package Management with RUBYGEMS:

RUBYGEMS is a standardized packaging and installation framework for
libraries and applications, making it easy to locate, install, upgrade, and

uninstall Ruby packages.

It provides users and developers with four main facilities.

1. A standardized package format

2. A central repository for hosting packages in this format

3. Installation and management of multiple, simultaneously installed

versions of the same library,

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 6 G Sunil Kumar, Assistant Professor

4. End-user tools for querying, installing, uninstalling, and otherwise

manipulating these packages.

In the RubyGems world, developers bundle their applications and

libraries into single files called gems.

RubyGems provides a command-line tool, appropriately named gem, for

manipulating the gem files.

We discuss three important things In Package Management with

RUBYGEMS which are

1. Install RubyGems on your computer.

2. Use RubyGems to install other applications and libraries.

3. Write your own gems.

1. Install RubyGems on your computer

To use RubyGems,we need to download and install the RubyGems

system from the project’s home page at http://rubygems.rubyforge.org.

After downloading and unpacking the distribution, we can install it using

the included installation script.

% cd rubygems0.7.0

% ruby install.rb

Depending on your operating system, you may need suitable privileges to

write files into Ruby’s site_ruby/ and bin/ directories.

The best way to test that RubyGems was installed successfully or not by

using following

% gem help

RubyGems is a sophisticated package manager for Ruby. This is a basic

help message containing pointers to more information

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 7 G Sunil Kumar, Assistant Professor

Installing Application Gems

Locating and installing Rake with RubyGems is simple by using

command

% gem install -r rake

Attempting remote installation of 'Rake'

Successfully installed rake, version 0.4.3

% rake --version

rake, version 0.4.3

RubyGems downloads the Rake package and installs it. Because Rake is

an application, RubyGems downloads both the Rake libraries and the

command-line program rake. you could use RubyGems’ version

requirement operators to specify criteria by which a version would be

selected.

% gem install -r rake v"< 0.4.3"

Attempting remote installation of 'rake'

Successfully installed rake, version 0.4.2

% rake--version

rake, version 0.4.2

Both the require_gem method and the add_dependency attribute in a

Gem::Specification accept an argument that specifies a version

dependency.

RubyGems version dependencies are of the form operator

major.minor.patch_level.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 8 G Sunil Kumar, Assistant Professor

Listed below is a table of all the possible version operators.

Installing and Using Gem Libraries

we use RubyGems to install Ruby libraries to develop own programs.

Since RubyGems enables you to install and manage multiple versions of

the same library.

For complete installation first of all we need to find and install the

BlueCloth gem.

The latest is downloaded by default.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 9 G Sunil Kumar, Assistant Professor

Generating API Documentation

Being that this is your first time using BlueCloth, you’re not exactly sure

how to use it. You need some API documentation to get started.

RubyGems will generate RDoc documentation for the gem it is installing.

We have two ways to view this. The hard way (though it really isn’t that

hard) is to open RubyGems’ documentation directory and browse the

documentation directly. As The most reliable way to find the documents

is to ask the gem command where your RubyGems main directory is

located For example:

RubyGems stores generated documentation in the doc/ subdirectory of

this directory, in this case /usr/local/lib/ruby/gems/1.8/doc. You can

open the file index.html and view the documentation. If you find yourself

using this path often, you can create a shortcut.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 10 G Sunil Kumar, Assistant Professor

Here’s one way to do that on Mac OS X

boxe

Let’s Code

Now you’ve got BlueCloth installed and you know how to use it, you’re

ready to write some code

With RubyGems, though, we can take advantage of its packaging and

versioning support.

To do this, we use require_gem in place of require.

Creating Your Own Gems

RubyGems makes things for the users of an application or library and

are probably ready to make a gem of our own. If we’re creating code to be

shared with the open-source community, RubyGems are an ideal way for

end-users to discover, install, and uninstall our code.

MomLog : - is an open-source license software which provide a

powerful way to manage internal,

company projects, or even personal projects, since they make upgrades

and rollbacks so simple.

Package Layout

1. The first task in creating a gem is organizing your code into a

directory structure that makes sense

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 11 G Sunil Kumar, Assistant Professor

2. Put all of your Ruby source files under a subdirectory called lib/.

3. Always include a README file including a project summary,

author contact information,

and pointers for getting started.

4. Use RDoc format for this file so you can add it to the

documentation that will be generated during gem installation.

5. Tests should go in a directory called test/.

6. Any executable scripts should go in a subdirectory called bin/.

7. Source code for Ruby extensions should go in ext/.

The Gem Specification

The gem specification, or gemspec is a collection of metadata in Ruby or

YAML that provides key information about your gem.Thegemspec is used

as input to the gem-building process. You can use several different

mechanisms to create a gem, Here’s your first, basic MomLog gem.

Runtime Magic

The next two attributes, require_path and autorequire, let you specify the

directories that will be added to the $LOAD_PATH when require_gem

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 12 G Sunil Kumar, Assistant Professor

loads the gem, as well as any files that will automatically be loaded using

require. In this example, lib refers to a relative path under the MomLog

gem directory, and the auto require will cause lib/momlog.rb to be

required when require_gem "MomLog" is called.

Building the Gem File

The MomLog gemspec we just created is runnable as a Ruby program.

Invoking it will create a gem file, MomLog0.5.0. gem.

Now that you’ve got a gem file, you can distribute it like any other

package. You can put it on an FTP server or a Web site for download or

e-mail it to your friends. Once your friends have got this file on their local

computers (downloading from your FTP server if necessary), they can

install the gem (assuming they have RubyGems installed too) by calling

Ruby and web: Writing CGI scripts:

Q) What is Common Gateway Interface (CGI)?

CGI is not a language. It’s a simple protocol that can be used to

communicate between Web forms and your program. A CGI script can be

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 13 G Sunil Kumar, Assistant Professor

written in any language that can read STDIN, write to STDOUT, and read

environment variables, i.e. virtually any programming language,

including C, Perl, or even shell scripting.

Q) How to Write CGI Scripts

 The most basic Ruby CGI script can be written as

#!/usr/bin/ruby

puts "HTTP/1.0 200 OK"

puts "Content-type: text/html\n\n"

puts "<html><body>This is a test</body></html>"

If you call this script test.cgi and uploaded it to a Unix-based Web

hosting provider with the right permissions, you could use it as a CGI

script.

For example, if you have the Web
site https://www.example.com/ hosted with a Linux Web hosting

provider and you upload test.cgi to the main directory and give it

execute permissions, then
visiting https://www.example.com/test.cgi should return an HTML page

saying This is a test.

Here when test.cgi is requested from a Web browser, the Web server
looks for test.cgi on the Web site, and then executes it using the Ruby

interpreter. The Ruby script returns a basic HTTP header and then

returns a basic HTML document.

Output:

https://www.example.com/
https://www.example.com/

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 14 G Sunil Kumar, Assistant Professor

Q) What is the use of cgi.rb?

Ruby comes with a special library called cgi that enables more

sophisticated interactions than those with the preceding CGI script.

A basic CGI script that uses cgi –

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

puts cgi.header

puts "<html><body>This is a test</body></html>"

output:

Here, you created a CGI object and used it to print the header line for

you.

Form Processing

Using class CGI gives you access to HTML query parameters in two

ways.

Suppose we are given a URL of /cgi-bin/test.cgi?FirstName =

Zara&LastName = Ali.

You can access the parameters FirstName and LastName using CGI#[]

directly as follows –

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi['FirstName'] # => ["Zara"]

cgi['LastName'] # => ["Ali"]

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 15 G Sunil Kumar, Assistant Professor

There is another way to access these form variables. This code will give

you a hash of all the key and values –

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

h = cgi.params # =>

{"FirstName"=>["Zara"],"LastName"=>["Ali"]}

h['FirstName'] # => ["Zara"]

h['LastName'] # => ["Ali"]

Following is the code to retrieve all the keys –

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi.keys # => ["FirstName", "LastName"]

If a form contains multiple fields with the same name, the corresponding
values will be returned to the script as an array. The [] accessor returns

just the first of these.index the result of the params method to get them

all.
Note − Ruby will take care of GET and POST methods automatically.

There is no separate treatment for these two different methods.

An associated, but basic, form that could send the correct data would

have the HTML code like so –

<html>

 <body>

 <form method = "POST" action =

"http://www.example.com/test.cgi">

 First Name :<input type = "text" name =

"FirstName" value = "" />

 Last Name :<input type = "text" name =

"LastName" value = "" />

 <input type = "submit" value = "Submit Data"

/>

 </form>

 </body>

</html>

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 16 G Sunil Kumar, Assistant Professor

Ruby - CGI Cookies

Q) What are HTTP cookies?

HTTP cookies are small blocks of data created by a web server while a

user is browsing a website and placed on the user's computer or other

device by the user's web browser. Cookies are placed on the device used
to access a website.

HTTP protocol is a stateless protocol. But for a commercial website, it is

required to maintain session information among different pages. For
example, one user registration ends after completing many pages. But

how to maintain user's session information across all the web pages.

In many situations, using cookies is the most efficient method of
remembering and tracking preferences, purchases, commissions, and

other information required for better visitor experience or site statistics.

How It Works?

Your server sends some data to the visitor's browser in the form of a

cookie. The browser may accept the cookie. If it does, it is stored as a
plain text record on the visitor's hard drive. Now, when the visitor

arrives at another page on your site, the cookie is available for retrieval.

Once retrieved, your server knows/remembers what was stored.

Cookies are a plain text data record of five variable-length fields −

 Expires − The date the cookie will expire. If this is blank, the cookie will expire

when the visitor quits the browser.

 Domain − The domain name of your site.

 Path − The path to the directory or web page that sets the cookie. This may be

blank if you want to retrieve the cookie from any directory or page.

 Secure − If this field contains the word "secure", then the cookie may only be

retrieved with a secure server. If this field is blank, no such restriction exists.

 Name = Value − Cookies are set and retrieved in the form of key and value pairs

 Q) How to Handle Cookies in Ruby

we can create a named cookie object and store any textual information in

it. To send it down to the browser, set a cookie header in the call

to CGI.out.

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 17 G Sunil Kumar, Assistant Professor

cookie = CGI::Cookie.new('name' => 'mycookie',

'value' => 'Zara Ali', 'expires' => Time.now + 3600)

cgi.out('cookie' => cookie) do

 cgi.head + cgi.body { "Cookie stored" }

end

output:

The next time the user comes back to this page, you can retrieve the

cookie values set as shown below –

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

cookie = cgi.cookies['mycookie']

cgi.out('cookie' => cookie) do

 cgi.head + cgi.body { cookie[0] }

end

output:

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 18 G Sunil Kumar, Assistant Professor

Cookies are represented using a separate object of class CGI::Cookie,

containing the following accessors −

Ruby - CGI Sessions

Q) What is A CGI::Session?

A session is a period of time wherein a user interacts with an app.

Session maintains a persistent state for Web users in a CGI environment.

Sessions should be closed after use, as this ensures that their data is
written out to the store. When you've permanently finished with a

session, you should delete it.

#!/usr/bin/ruby

require 'cgi'

require 'cgi/session'

cgi = CGI.new("html4")

sess = CGI::Session.new(cgi, "session_key" =>

"a_test", "prefix" => "rubysess.")

lastaccess = sess["lastaccess"].to_s

sess["lastaccess"] = Time.now

if cgi['bgcolor'][0] =~ /[a-z]/

 sess["bgcolor"] = cgi['bgcolor']

end

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 19 G Sunil Kumar, Assistant Professor

cgi.out {

 cgi.html {

 cgi.body ("bgcolor" => sess["bgcolor"]) {

 "The background of this page" +

 "changes based on the 'bgcolor'" +

 "each user has in session." +

 "Last access time: #{lastaccess}"

 }

 }

}

Accessing "/cgi-bin/test.cgi?bgcolor = red" would turn the page red for a

single user for each successive hit until a new "bgcolor" was specified via
the URL.

Session data is stored in a temporary file for each session, and the prefix
parameter assigns a string to be prepended to the filename, making your

sessions easy to identify on the filesystem of the server.

CGI::Session still lacks many features, such as the capability to store

objects other than Strings, session storage across multiple servers.

 Class CGI::Session

A CGI::Session maintains a persistent state for web users in a CGI

environment. Sessions may be memory-resident or may be stored on

disk.

Class Methods

Ruby class Class CGI::Session provides a single class method to create a
session −

CGI::Session::new(cgi[, option])

Starts a new CGI session and returns the corresponding CGI::Session

object. option may be an option hash specifying one or more of the
following −

session_key − Key name holding the session ID. Default is _session_id.

session_id − Unique session ID. Generated automatically

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 20 G Sunil Kumar, Assistant Professor

 new_session − If true, create a new session id for this session. If

false, use an existing session identified by session_id. If omitted,

use an existing session if available, otherwise create a new one.

 database_manager − Class to use to save sessions; may be

CGI::Session::FileStore or CGI::Session::MemoryStore. Default is

FileStore.

 tmpdir − For FileStore, directory for session files.

 prefix − For FileStore, prefix of session filenames.

Q) Creating Forms and HTML using CGI method

CGI contains a huge number of methods used to create HTML. You will
find one method per tag. In order to enable these methods, you must

create a CGI object by calling CGI.new.

To make tag nesting easier, these methods take their content as code
blocks. The code blocks should return a String, which will be used as the

content for the tag.

For example −

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

cgi.out {

 cgi.html {

 cgi.head { "\n"+cgi.title{"This Is a Test"} } +

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 21 G Sunil Kumar, Assistant Professor

 cgi.body { "\n"+

 cgi.form {"\n"+

 cgi.hr +

 cgi.h1 { "A Form: " } + "\n"+

 cgi.textarea("get_text") +"\n"+

 cgi.br +

 cgi.submit

 }

 }

 }

}

NOTE − The form method of the CGI class can accept a method
parameter, which will set the HTTP method (GET, POST, and so on...) to

be used on form submittal. The default, used in this example, is POST.

Output:

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 22 G Sunil Kumar, Assistant Professor

Choice of Web Servers

So far, we’ve been running Ruby scripts under the control of the Apache

Web server. However, Ruby 1.8 and later comes bundled with WEBrick, a

flexible, pure-Ruby HTTP server toolkit. Basically, it’s an extensible plug

in–based framework that lets you write servers to handle HTTP requests

and responses. Here’s a basic HTTP server that serves documents and

directory indexes.

#!/usr/bin/ruby

require 'webrick'

 include WEBrick

s = HTTPServer.new(:Port => 2000, :DocumentRoot => File. join(Dir.pwd, "/html"))

trap("INT") { s.shutdown }

s.start • •

The HTTPServer constructor creates a new Web server on port 2000. The

code sets the document root to be the html/ subdirectory of the current

directory. It then uses Kernel.trap to arrange to shut down tidily on

interrupts before starting the server running. If you point your browser

at http://localhost:2000, you should see a listing of your html

subdirectory. WEBrick can do far more than serve static content. You

can use it just like a Java servlet container

SOAP and Web Services

SOAP:

 The Simple Object Access Protocol (SOAP), is a cross-platform and

language-independent RPC protocol based on XML and, usually (but not

necessarily) HTTP.

 It uses XML to encode the information that makes the remote procedure

call, and HTTP to transport that information across a network from

clients to servers and vice versa.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 23 G Sunil Kumar, Assistant Professor

 SOAP has several advantages over other technologies like COM, CORBA

etc: for example, its relatively cheap deployment and debugging costs, its

extensibility and ease-of-use, and the existence of several

implementations for different languages and platforms. •

Installing SOAP4R:

 SOAP4R is the SOAP implementation for Ruby developed by Hiroshi

Nakamura and can be downloaded from − download SOAP

If you are aware of gem utility then you can use the following command

to install SOAP4R and related packages.

 $ gem install soap4r --include�dependencies

Writing SOAP4R Servers

• SOAP4R supports two different types of servers

-CGI/FastCGI based (SOAP::RPC::CGIStub)

-Standalone (SOAP::RPC:StandaloneServer)

Step 1 - Inherit SOAP::RPC::Standalone Server Class

To implement your own stand-alone server you need to write a new class,

which will be child of SOAP:: StandaloneServer as follows

− class MyServer < SOAP::RPC::StandaloneServer

...............

end

 Step 2 - Define Handler Methods Second step is to write your Web

Services methods, which you would like to expose to the outside world.

They can be written as simple Ruby methods. For example, let's write two

methods to add two numbers and divide two numbers is

− class MyServer < SOAP::RPC::StandaloneServer

...............

Handler methods

def add(a, b)

return a + b

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 24 G Sunil Kumar, Assistant Professor

End

def div(a, b)

return a / b

End

end

 Step 3 - Expose Handler Methods

Next step is to add our defined methods to our server. The initialize

method is used to expose service methods with one of the two following

methods –

class MyServer < SOAP::RPC::StandaloneServer

def initialize(*args)

add_method(receiver, methodName, *paramArg)

end

end

• To understand the usage of inout or out parameters, consider the

following service method that takes two parameters (inParam and

inoutParam), returns one normal return value (retVal) and two further

parameters: inoutParam and outParam –

def aMeth(inParam, inoutParam)

retVal = inParam + inoutParam

outParam = inParam . inoutParam

inoutParam = inParam * inoutParam

return retVal, inoutParam, outParam

end

 Step 4 - Start the Server:

The final step is to start your server by instantiating one instance of the

derived class and calling start method.

myServer = MyServer.new('ServerName' , 'urn:ruby: ServiceName' ,

hostname, port)

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 25 G Sunil Kumar, Assistant Professor

myServer.start

Example

Now, using the above steps, let us write one standalone server –

require "soap/rpc/standaloneserver“

begin

class MyServer < SOAP::RPC::StandaloneServer

Expose our services

def initialize(*args)

add_method(self, 'add' , 'a' , 'b')

add_method(self, 'div' , 'a' , 'b')

end

Handler methods

def add(a, b)

return a + b

end

def div(a, b)

return a / b

End

 end

server = MyServer.new("MyServer" , 'urn:ruby:calculation' , 'localhost' , 8080)

trap('INT){ server.shutdown }

server.start rescue => err

puts err.message

end

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 26 G Sunil Kumar, Assistant Professor

Ruby

Simple Tk Application and Ruby Widgets

The standard graphical user interface (GUI) for Ruby is Tk. Tk started out

as the GUI for the Tcl scripting language developed by John Ousterhout.

Installation

The Ruby Tk bindings are distributed with Ruby but Tk is a separate

installation. Windows users can download a single click Tk installation

from ActiveState's ActiveTcl.
Mac and Linux users may not need to install it because there is a great

chance that its already installed along with OS but if not, you can

download prebuilt packages or get the source from the Tcl Developer
Xchange.

Tk is an extension of Tcl. Tk provides an X Window system–based

toolkit you can use in Tcl scripts to build GUIs. As you might expect, Tk

provides a set of Tcl commands beyond the core built-in set. You can
use these Tk commands to create windows, menus, buttons, and other

user-interface components and to provide a GUI for your Tcl scripts.

Tk uses the X Window system for its graphic components, known as
widgets. A widget represents a user-interface component, such as a

button, scroll bar, menu, list, or even an entire text window. Tk widgets

provide a Motif-like, three-dimensional appearance.

Q) How to run “Hello, World!” in Tk

 Tk is a major-enough extension to Tcl to warrant its own shell,

called wish (the windowing shell). The wish shell interprets all built-in
Tcl commands, as well as the Tk commands. You must start X before you

can run wish; after all, wish enables you to use X to create graphical

interfaces.

The wish program should be in the /usr/bin directory, which should be
in your PATH environment variable by default. To start wish, all you have

to do is type the following at the shell prompt in a terminal window:

The wish program displays its prompt (the percent sign) and a small
window, as shown in the upper-right corner of Figure 25-1.

http://aspn.activestate.com/ASPN/Downloads/ActiveTcl/
https://www.tcl.tk/software/tcltk/downloadnow84.tml
https://www.tcl.tk/software/tcltk/downloadnow84.tml

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 27 G Sunil Kumar, Assistant Professor

Therefore, wish provides an interactive prompt from which you can enter

Tk commands to create a graphical interface. As wish interprets the

commands, it displays the resulting graphical interface in the window.

To see how this interactive creation of graphical interface works, try the

following commands at the wish prompt:

 % label .msg -text "Hello, World!"

.msg

% button .bye -text "Bye" -command { exit }

.bye

% pack .msg .bye

%

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 28 G Sunil Kumar, Assistant Professor

A typical structure for Ruby/Tk programs is to create the main

or root window (an instance of TkRoot), add widgets to it to build up the

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 29 G Sunil Kumar, Assistant Professor

user interface, and then start the main event loop by

calling Tk.mainloop.

The traditional Hello, World! example for Ruby/Tk looks something like

this −

require 'tk'

root = TkRoot.new { title "Hello, World!" }
TkLabel.new(root) do

 text 'Hello, World!'

 pack { padx 15 ; pady 15; side 'left' }
end

Tk.mainloop

Here, after loading the tk extension module, we create a root-level frame

using TkRoot.new. We then make a TkLabel widget as a child of the root
frame, setting several options for the label. Finally, we pack the root

frame and enter the main GUI event loop.

If you would run this script, it would produce the following result −

Ruby Widget

A frame is a widget that displays just as a simple rectangle. Frames are

primarily used as a container for other widgets, which are under the

control of a geometry manager such as grid.

The only features of a frame are its background color and an optional 3-

D border to make the frame appear raised or sunken.

Syntax

Here is a simple syntax to create a Frame Widget −

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 30 G Sunil Kumar, Assistant Professor

TkFrame.new {

 Standard Options....

 Widget-specific Options....
}

Standard Options

 borderwidth

 highlightbackground

 highlightthickness

 takefocus

 highlightcolor

 relief

 cursor

These options have been described in the previous chapter.

Widget Specific Options

Sr.No. Options & Description

1
background => String

This option is the same as the standard background option except
that its value may also be specified as an undefined value. In this

case, the widget will display no background or border, and no colors

will be consumed from its colormap for its background and border.

2
colormap => String

Specifies a colormap to use for the window. The value may be

either new, in which case a new colormap is created for the window
and its children, or the name of another window (which must be on

the same screen), in which case the new window will use the

colormap from the specified window. If the colormap option is not

specified, the new window uses the same colormap as its parent.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 31 G Sunil Kumar, Assistant Professor

3
container => Boolean

The value must be a boolean. If true, it means that this window will

be used as a container in which some other application will be

embedded. The window will support the appropriate window
manager protocols for things like geometry requests. The window

should not have any children of its own in this application.

4
height => Integer

Specifies the desired height for the window in pixels or points.

5
width => Integer

Specifies the desired width for the window in pixels or points.

Event Bindings

When a new frame is created, it has no default event bindings: frames

are not intended to be interactive.

Examples

require "tk"

f1 = TkFrame.new {

 relief 'sunken'

 borderwidth 3
 background "red"

 padx 15

 pady 20

 pack('side' => 'left')
}

f2 = TkFrame.new {

 relief 'groove'
 borderwidth 1

 background "yellow"

 padx 10
 pady 10

 pack('side' => 'right')

}

TkButton.new(f1) {

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 32 G Sunil Kumar, Assistant Professor

 text 'Button1'
 command {print "push button1!!\n"}

 pack('fill' => 'x')

}
TkButton.new(f1) {

 text 'Button2'

 command {print "push button2!!\n"}

 pack('fill' => 'x')
}

TkButton.new(f2) {

 text 'Quit'
 command 'exit'

 pack('fill' => 'x')

}

Tk.mainloop

This will produce the following result −

Ruby/Tk Widget Classes

There is a list of various Ruby/Tk classes, which can be used to create a

desired GUI using Ruby/Tk.

 TkFrame Creates and manipulates frame widgets.

 TkButton Creates and manipulates button widgets.

 TkLabel Creates and manipulates label widgets.

 TkEntry Creates and manipulates entry widgets.

 TkCheckButton Creates and manipulates checkbutton widgets.

 TkRadioButton Creates and manipulates radiobutton widgets.

 TkListbox Creates and manipulates listbox widgets.

https://www.tutorialspoint.com/ruby/ruby_tk_frame.htm
https://www.tutorialspoint.com/ruby/ruby_tk_button.htm
https://www.tutorialspoint.com/ruby/ruby_tk_label.htm
https://www.tutorialspoint.com/ruby/ruby_tk_entry.htm
https://www.tutorialspoint.com/ruby/ruby_tk_checkbutton.htm
https://www.tutorialspoint.com/ruby/ruby_tk_radiobutton.htm
https://www.tutorialspoint.com/ruby/ruby_tk_listbox.htm

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 33 G Sunil Kumar, Assistant Professor

 TkComboBox Creates and manipulates listbox widgets.

 TkMenu Creates and manipulates menu widgets.

 TkMenubutton Creates and manipulates menubutton widgets.

 Tk.messageBox Creates and manipulates a message dialog.

 TkScrollbar Creates and manipulates scrollbar widgets.

 TkCanvas Creates and manipulates canvas widgets.

 TkScale Creates and manipulates scale widgets.

 TkText Creates and manipulates text widgets.

 TkToplevel Creates and manipulates toplevel widgets.

 TkSpinbox Creates and manipulates Spinbox widgets.

 TkProgressBar Creates and manipulates Progress Bar widgets.

 Dialog Box Creates and manipulates Dialog Box widgets.

 Tk::Tile::Notebook Display several windows in limited space with

notebook metaphor.

 Tk::Tile::Paned Displays a number of subwindows, stacked either

vertically or horizontally.

 Tk::Tile::Separator Displays a horizontal or vertical separator bar.

 Ruby/Tk Font, Colors and Images Understanding Ruby/Tk Fonts,

Colors and Images

Standard Configuration Options

All widgets have a number of different configuration options, which
generally control how they are displayed or how they behave. The

options that are available depend upon the widget class of course.

Here is a list of all the standard configuration options, which could be

applicable to any Ruby/Tk widget.

https://www.tutorialspoint.com/ruby/ruby_tk_combobox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_menu.htm
https://www.tutorialspoint.com/ruby/ruby_tk_menubutton.htm
https://www.tutorialspoint.com/ruby/ruby_tk_messagebox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_scrollbar.htm
https://www.tutorialspoint.com/ruby/ruby_tk_canvas.htm
https://www.tutorialspoint.com/ruby/ruby_tk_scale.htm
https://www.tutorialspoint.com/ruby/ruby_tk_text.htm
https://www.tutorialspoint.com/ruby/ruby_tk_toplevel.htm
https://www.tutorialspoint.com/ruby/ruby_tk_spinbox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_progressbar.htm
https://www.tutorialspoint.com/ruby/ruby_tk_dialogbox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_notebook.htm
https://www.tutorialspoint.com/ruby/ruby_tk_paned.htm
https://www.tutorialspoint.com/ruby/ruby_tk_separator.htm
https://www.tutorialspoint.com/ruby/ruby_tk_fonts_colors_images.htm

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 34 G Sunil Kumar, Assistant Professor

Binding events

 Our widgets are exposed to the real world; they get clicked, the mouse

moves over them, the user tabs into them; all these things, and more,

generate events that we can capture. You can create a binding from an

event on a particular widget to a block of code, using the widget’s bind

method.

 For instance, suppose we’ve created a button widget that displays an

image. We’d like the image to change when the user’s mouse is over the

button.

 require 'tk'

image1 = TkPhotoImage.new { file "img1.gif" }

 image2 = TkPhotoImage.new { file "img2.gif" }

b = TkButton.new(@root) do

image image1

command { exit }

Pack

nd b.bind("Enter") { b.configure('image' =>image2) }

 b.bind("Leave") { b.configure('image' =>image1) }

Tk.mainloop

Canvas

 Tk provides a Canvas widget with which you can draw and produce

PostScript output.

 A simple bit of code (adapted from the distribution) that will draw

straight lines. Clicking and holding button 1 will start a line, which will

be “rubber-banded” as you move the mouse around. When you release

button 1, the line will be drawn in that position.

- A f e w m o u s e c l i c k s , a n d y o u ’ v e g o t a n i n s t a n t m

a s t e r p i e c e .

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 35 G Sunil Kumar, Assistant Professor

require 'tk'

class Draw

def do_press(x, y)

@start_x = x

@start_y = y

@current_line = TkcLine.new(@canvas, x, y, x, y)

end

def do_motion(x, y)

if @current_line @current_line.coords @start_x, @start_y, x, y

end

end

def do_release(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

@current_line.fill 'black' @current_line = nil

end

end

def initialize(parent) @canvas = TkCanvas.new(parent)

@canvas.pack

@start_x = @start_y = 0

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 36 G Sunil Kumar, Assistant Professor

@canvas.bind("1", lambda {|e| do_press(e.x, e.y)})

@canvas.bind("B1-Motion", lambda {|x, y| do_motion(x, y)}, "%x

%y")

@canvas.bind("ButtonRelease-1", lambda {|x, y| do_release(x, y)},

"%x %y") End

end

root = TkRoot.new { title 'Canvas' }

Draw.new(root)

Tk.mainloop

Scrolling

- TkCanvas, TkListbox, and TkText can be set up to use scrollbars,

so you can work on a smaller subset of the “big picture.”

- Communication between a scrollbar and a widget is bidirectional.

Moving the scrollbar means that the widget’s view has to change;

but when the widget’s view is changed by some other means, the

scrollbar has to change as well to reflect the new position.

- we’ll start by creating a plain old TkListbox and an associated

TkScrollbar. The scrollbar’s callback (set with command) will call

the list widget’s yview method, which will change the value of the

visible portion of the list in the y direction.

- After that callback is set up, we make the inverse association:

when the list feels the need to scroll, we’ll set the appropriate range

in the scrollbar using TkScrollbar#set.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 37 G Sunil Kumar, Assistant Professor

UNIT-2

Extending Ruby

Just to introduce extension writing, let’s write one. This extension is

purely a test of the process—it does nothing that you couldn’t do in pure

Ruby.We’ll also present some stuff without too much explanation—all the

messy details will be given later.The extension we write will have the

same functionality as the following Ruby class.

Class MyTest

definitialize

@arr=Array.new

end

defadd(obj)

@arr.push(obj)

End

End

Ruby Objects in C:

Everything in Ruby is an object, and all variables are references to objects. Most Ruby

objects are represented as C pointers to an area in memory that contains the object’s data

and other implementation details. In C code, all these references are via variables of type

VALUE, so when you pass Ruby objects around, you’ll do it by passing VALUEs

Working with Immediate Objects: immediate values are not pointers: Fixnum, Symbol

true, false, and nil are stored directly in VALUE.

FIXNUM_P(value)→ non zero if value is a Fixnum

SYMBOL_P(value)→ nonzeroifvalueisaSymbol

NIL_P(value)→ non zero if value is nil

RTEST(value)→ non zero if value is neither nil nor false

Fixnum values are stored as 31-bit numbers1that are formed by shifting the original

number left1bit and then setting the LSB, or least significant bit (bit0), to 1.

Working with Strings:

C DataTypes to Ruby Objects:

 INT2NUM(int)→ Fixnum or Bignum

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 38 G Sunil Kumar, Assistant Professor

INT2FIX(int)→ Fixnum(faster)

LONG2NUM(long→ Fixnum or Bignum

LONG2FIX(int)→ Fixnum(faster)

LL2NUM(long long)→ Fixnum or Bignum (if native system supports long long type)

ULL2NUM(long long)→ Fixnum or Bignum (if native system supports long long type)

CHR2FIX(char)→ Fixnum

rb_str_new2(char*)→ String

rb_float_new(double)→ Float

Ruby Objects to C Data Types:

int NUM2INT(Numeric) (Includes type check)

int FIX2INT(Fixnum) (Faster) unsigned int NUM2UINT(Numeric) (Includes type check)

unsigned int FIX2UINT(Fixnum) (Includes type check)

long NUM2LONG(Numeric)(Includes type check)

long FIX2LONG(Fixnum) (Faster)

unsigned long NUM2ULONG(Numeric) (Includes type check)

char NUM2CHR(Numeric or String)(Includes type check) doubleNUM2DBL(Numeric)

Ruby String objects are actually references to an RString structure

RString structure contains both a length and a pointer field. You can access the structure

via the RSTRING macro.

VALUE str;

RSTRING(str)->len→ length of the Ruby string

RSTRING(str)->ptr→ pointer to strings to rage

Global Variables:

The easiest way to do this is to have the variable be a VALUE (that is, a Ruby object).

You then bind the address of this C variable to the name of a Ruby variable. In this case,

the $prefix is optional, but it helps clarify that this is a global variable. And remember:

making a stack-based variable a Ruby global is not going to work(for long).

The Juke box Extension:

Interfacing C code with Ruby and sharing data and behavior between the two worlds.

C Data Type Wrapping:

 VALUE Data_Wrap_Struct(VALUE class, void(*mark)(),

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 39 G Sunil Kumar, Assistant Professor

Void (*free)(),void*ptr)

Wraps the given C data type ptr, registers the two garbage collection routines (see

below), and returns a VALUE pointer to a genuine Ruby object. The C type of the

resulting object is T_DATA, and its Ruby class is class.

 VALUE Data_Make_Struct (VALUE class, ctype,

void(*mark)(),

void(*free)(), ctype*)

Allocates and sets to zero a structure of the indicated type first and then proceeds as

Data_Wrap_Struct. c-type is the name of the C data type that you’re wrapping, not a

variable of that type.

 Data_Get_Struct(VALUE obj, ctype, ctype*) Returns the original pointer.This macro is

a type-safe wrapper around the macro DATA_PTR(obj),which evaluates the pointer.

Object Creation:

Creating an object of class CD Player in your Ruby program.

 Cd =CD Player.new

The implementation of new in class Class is fairly simple: it allocates memory for the

new object and then calls the object’s initialize method to initialize that memory.

CodeforCDplayerclass:

#include"ruby.h"

#include"cdjukebox.h"

staticVALUEcCDPlayer;

//HelperfunctiontofreeavendorCDJukebox

staticvoidcd_free(void*p){

free_jukebox(p);

}

//Allocate a new CDPlayer object, wrapping

//the vendor's CD Jukebox structure

staticVALUEcd_alloc(VALUEklass){

CDJukebox*jukebox;

VALUEobj;

//Vendor library creates the Jukebox

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 40 G Sunil Kumar, Assistant Professor

jukebox=new_jukebox();

//thenwewrapitinsideaRubyCDPlayerobject

obj=Data_Wrap_Struct(klass,0,cd_free,jukebox);

returnobj;

}

//Assign the newly created CDPLayer to a

//particularunit

staticVALUEcd_initialize(VALUEself,VALUEunit){

intunit_id;

CDJukebox*jb;

Data_Get_Struct(self,CDJukebox,jb);

unit_id=NUM2INT(unit);

assign_jukebox(jb,unit_id);

returnself;

}

//Copy a cross state(used by clone and dup).For jukeboxes, we

//actuallycreateanewvendorobjectandsetitsunitnumberfrom

//theold

staticVALUEcd_init_copy(VALUEcopy,VALUEorig){

CDJukebox*orig_jb;

CDJukebox*copy_jb;

if(copy==orig)

returncopy;

//we can initialize the copy from other CDPlayers or their

//subclassesonly

if(TYPE(orig)!=T_DATA||

RDATA(orig)>

dfree!=(RUBY_DATA_FUNC)cd_free){

rb_raise(rb_eTypeError,"wrongargumenttype");

}

//copy all the fields from the original object's CDJukebox

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 41 G Sunil Kumar, Assistant Professor

//structuretothenewobject

Data_Get_Struct(orig,CDJukebox,orig_jb);

Data_Get_Struct(copy,CDJukebox,copy_jb);

MEMCPY(copy_jb,orig_jb,CDJukebox,1);

returncopy;

}

//Theprogresscallbackyieldstothecallerthepercentcomplete

staticvoidprogress(CDJukebox*rec,intpercent){

if(rb_block_given_p()){

if(percent>100)percent=100;

if(percent<0)percent=0;

rb_yield(INT2FIX(percent));

}

}

//Seektoagivenpartofthetrack,invokingtheprogresscallback

//aswego

staticVALUE

cd_seek(VALUEself,VALUEdisc,VALUEtrack){

CDJukebox*jb;

Data_Get_Struct(self,CDJukebox,jb);

jukebox_seek(jb,

NUM2INT(disc),

NUM2INT(track),

progress);

returnQnil;

}

//Returntheaverageseektimeforthisunit

staticVALUE

cd_seek_time(VALUEself)

cd_seek_time(VALUEself)

{

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 42 G Sunil Kumar, Assistant Professor

doubletm;

CDJukebox*jb;

Data_Get_Struct(self,CDJukebox,jb);

tm=get_avg_seek_time(jb);

returnrb_float_new(tm);

}

//Returnthisplayer'sunitnumber

staticVALUE

cd_unit(VALUEself){

CDJukebox*jb;

Data_Get_Struct(self,CDJukebox,jb);

returnINT2NUM(jb>

unit_id);

}

voidInit_CDPlayer(){

cCDPlayer=rb_define_class("CDPlayer",rb_cObject);

rb_define_alloc_func(cCDPlayer,cd_alloc);

rb_define_method(cCDPlayer,"initialize",cd_initialize,1);

rb_define_method(cCDPlayer,"initialize_copy",cd_init_copy,1);

rb_define_method(cCDPlayer,"seek",cd_seek,2);

rb_define_method(cCDPlayer,"seek_time",cd_seek_time,0);

rb_define_method(cCDPlayer,"unit",cd_unit,0);

}

NowwecancontrolourjukeboxfromRubyinanice,object-orientedway.

require'CDPlayer'

p=CDPlayer.new(13)

puts"Unitis#{p.unit}"

p.seek(3,16){|x|puts"#{x}%done"}

puts"Avg.timewas#{p.seek_time}seconds"

p1=p.dup

puts"Clonedunit=#{p1.unit}"

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 43 G Sunil Kumar, Assistant Professor

Produces:

Unitis13

26%done

79%done

100%done

Avg.timewas1.2seconds

Cloned unit=1

Memory Allocation:

You may sometimes need to allocate memory in an extension that won’t

be used for object storage—perhaps you’ve got a giant bit map for a

Bloom filter, an image, or a Whole bunch of little structures that Ruby

doesn’t use directly.

To work correctly with the garbage collector, you should use the following

memory allocation routines. These routines do a little bit more work than

the standard malloc.

For instance, if ALLOC_N determines that it cannot allocate the desired

amount of memory, it will invoke the garbage collector to try to reclaim

some space. It will raise a

NoMemError if it can’t or if the requested amount of memory is invalid.

API: Memory Allocation:

 type*ALLOC_N(ctype,n)

Allocates n c-type objects, where c-type is the literal name of the Ctype,

Not a variable of that type.

 type*ALLOC(ctype)

Allocates a c-type and casts the result to a pointer of that type.

 REALLOC_N(var,ctype,n)

Reallocates n c-types and assigns the result to var, a pointer to a variable

Of type c-type.

 type*ALLOCA_N(ctype,n)

Allocates memory for n objects of c-type on the stack—this memory will

be automatically freed when the function that invokes ALLOCA_N

returns.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 44 G Sunil Kumar, Assistant Professor

Ruby Type System:

In Ruby, we rely less on the type(or class) of an object and more on its

capabilities. This is called duck typing. You’ll find many examples of this

if you examine the source code for the interpreter Itself.Forexample,the

following code implements

The Kernel.exec method.

VALUE

rb_f_exec(argc,argv)

int argc;

VALUE*argv;

{

VALUE prog=0;

VALUE tmp;

if(argc==0){

rb_raise(rb_eArgError,"wrong number of arguments");

}

tmp=rb_check_array_type(argv[0]);

if(!NIL_P(tmp)){

if(RARRAY(tmp)>

len!=2){

rb_raise(rb_eArgError,"wrong first argument");

}

prog=RARRAY(tmp)>

ptr[0];

Safe String Value(prog);

argv[0]=RARRAY(tmp)>

ptr[1];

}

if(argc==1&&prog==0){

VALUE cmd=argv[0];

Safe String Value(cmd);

rb_proc_exec(RSTRING(cmd)>

ptr);

}

else{

proc_exec_n(argc,argv,prog);

}

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 45 G Sunil Kumar, Assistant Professor

rb_sys_fail(RSTRING(argv[0])>

ptr);

returnQnil;/*dummy*/

}

The first parameter to this method may be a string or an array

containing two strings. However, the code doesn’t explicitly check the

type of the argument. Instead, it First call srb_check_array_type, passing

in the argument. What does this method do?

Let’s see.

VALUE

rb_check_array_type(ary)

VALUE ary;

{

returnrb_check_convert_type(ary,T_ARRAY,"Array","to_ary");

}

The plot thickens. Let’s track dow nrb_check_convert_type.

VALUE

rb_check_convert_type(val,type,tname,method)

VALUE val;

Int type;

Const char*tname,*method;

{

VALUE v;

/*always convert T_DATA*/

if(TYPE(val)==type&&type!=T_DATA)return val;

v=convert_type(val,tname,method,Qfalse);

if(NIL_P(v))return Qnil;

if(TYPE(v)!=type){

rb_raise(rb_eType Error,"%s#%s should return %s",

rb_obj_classname(val),method,tname);

}

Return v;

}

Embedding a Ruby Interpreter:

To extending Ruby by adding Ccode, you can also turn the problem

around and Embed Ruby itself within your application. You have two

ways to do this. The first is to Let the interpreter take control by calling

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 46 G Sunil Kumar, Assistant Professor

ruby_run. This is the easiest approach, but it has one significant

drawback:

—the interpreter never returns from a ruby_run call.

#include"ruby.h"

Int main(void){

/*...our own application stuff...*/

ruby_init();

ruby_init_loadpath();

ruby_script("embedded");

rb_load_file("start.rb");

ruby_run();

exit(0);

}

To initialize the Ruby interpreter, you need to call ruby_init().But on

some platforms, you may need to take special steps before that.

#ifdefined(NT)

Nt Initialize(&argc,&argv);

#endif

#if defined(__MACOS__)&&defined(__MWERKS__)

argc=ccommand(&argv);

#endif

See main.c in the Ruby distribution for any other special defines or setup

needed For your platform.

You need the Ruby include and library files accessible to compile this

embedded code. On my box(MacOSX)interpreter installed in a private

directory,somy Make file looks like this.

WHERE=/Users/dave/ruby1.8/lib/ruby/1.8/powerpcdarwin/

CFLAGS=I$(WHERE)-g

LDFLAGS=L$(WHERE)-lruby–ldl-lobjc

embed:embed.o

$(CC)–oembedembed.o$(LDFLAGS)

The second way of embedding Ruby allows Ruby code and your C code to

Engage in more of a dialogue: the C code calls some Ruby code, and the

Ruby code responds. You do this by initializing the interpreter as normal.

Then, rather than entering the interpreter’s main loop, you instead

invoke specific methods in your Ruby code. When these methods return,

your C code gets control back. There’s a wrinkle, though. If the Ruby

code raises an exception and it isn’t caught, your C program will

terminate. To overcome this, you need to do what the interpreter does

and protect all

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 47 G Sunil Kumar, Assistant Professor

calls that could raise an exception. This can get messy. Therb_protect

method call wraps the call to another C function. That second function

should invoke our Ruby method.However,the method wrapped by

rb_protect is defined to take just a single parameter. To pass more

involves some ugly C casting.Here’s a simple Ruby class that implements

a method to return the sum of the numbers From one to max.

class Summer

defsum(max)

raise"Invalid maximum#{max}"ifmax<0

(max*max+max)/2

end

end

Let’s write a C program that calls an instance of this class multiple

times. To Create the instance, we’ll get the class object(by looking for a

top-level constant whose Name is the name of our class). We’ll then ask

Ruby to create an instance of that class—

rb_class_new_instance is actually acalltoClass.new.(The two initial0

parameters are the argument count and a dummy pointer to the

arguments themselves.) Once

we have that object, we can invoke its sum method using rb_funcall.

#include"ruby.h"

Static int d_sum;

int Values[]={5,10,15,1,20,0};

static VALUEwrap_sum(VALUEargs){

VALUE*values=(VALUE*)args;

VALUEsummer=values[0];

VALUEmax=values[1];

Return rb_funcall(summer,id_sum,1,max);

}

static VALUE protected_sum(VALUE summer, VALUE max){

interror;

VALUE args[2];

VALUE result;

args[0]=summer;

args[1]=max;

result=rb_protect(wrap_sum,(VALUE)args,&error);

return error?Qnil:result;

}

Int main(void){

Int value;

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 48 G Sunil Kumar, Assistant Professor

int*next=Values;

ruby_init();

ruby_init_loadpath();

ruby_script("embedded");

rb_require("sum.rb");

//get an instance of Summer

VALUE summer=rb_class_new_instance(0,0,

rb_const_get(rb_cObject,rb_intern("Summer")));

id_sum=rb_intern("sum");

while(value=*next++){

VALUE result=protected_sum(summer,INT2NUM(value));

if(NIL_P(result))

printf("Sumto%ddoesn'tcompute!\n",value);

else

printf("Sumto%dis%d\n",value,NUM2INT(result));

}

ruby_finalize();

exit(0);

}

The Ruby interpreter was not originally written with embedding in mind.

Probably the biggest problem is that it maintains state in global

variables, so it is n’t thread-safe.

You can embed Ruby—just one interpreter per process.

EmbeddedRubyAPI:

 void ruby_init()

Sets up and initializes the interpreter. This function should be called

before any other Ruby-related functions.

 Void ruby_init_loadpath()

Initializes the $: (loadpath) variable; necessary if your code loads any

library modules.

 Void ruby_options(intargc,char**argv)

Gives the Ruby interpreter the command-line options.

 Void ruby_script(char*name)

Sets the name of the Ruby script (and$0)to name.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 49 G Sunil Kumar, Assistant Professor

 Void rb_load_file(char*file)

Loads the given file in to the interpreter.

 Void ruby_run()

Runs the interpreter.

 Void ruby_finalize()

Shuts down the interpreter.

Bridging Ruby to Other Languages.

You can write extensions in just about any language, as long as you can

bridge the two languages with C. Almost anything is possible, including

awkward marriages of Ruby and C++,Ruby and Java, and so on.

But you may be able to accomplish the same thing without resorting to C

code.

For example, you could bridge to other languages using middle ware

such as SOAP or COM.

Ruby C Language API:

Last, bu by no means least, here are some C-level functions that you

may find useful when writing an extension. Some functions require an

ID: you can obtainan ID for a string by using rb_intern and reconstruct

the name from an ID by using rb_id2name.

The following listing is not complete. Many more functions are

available—too many to document the mall,as it turns out. If you need a

method that you can’t find here,check ruby.horintern.h for likely

candidates.

 Ruby Language Core

 class.c, error.c eval.c, gc.c, object.c, parse.y, variable.c

 Utility Functions

dln.c, regex.c, st.c, util.c

 Ruby Interpreter

dmyext.c, inits.c, keywordsmain.c, ruby.c, version.c

 Base Library

array.c, bignum.c, compar.c,dir.c ,enum.c, file.c, hash.c, io.c, marshal.c,

math.c,numeric.c, pack.c,prec.c, process.c, random.c, range.c,re.c,

signal.c, sprintf.c, string.c,struct.c,time.c

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 50 G Sunil Kumar, Assistant Professor

API: Defining Classes:

 VALUE rb_define_class(char*name, VALUE superclass)

Defines a new class at the top level with the given name and super class

(for class Object, userb_cObject).

 VALUE rb_define_module(char*name)

Defines a new module at the top level with the given name.

 VALUE rb_define_class_under(VALUE under, char*name, VALUE

superclass)

Defines a nested class under the class or module under.

 VALUE rb_define_module_under(VALUE under,char*name)

Defines a nested module under the class or module under.

 Void rb_include_module(VALUE parent, VALUE module)

Includes the given module in to the class or module parent.

 Void rb_extend_object(VALUE obj,VALU Emodule)

Extends obj with module.

 VALUE rb_require(constchar*name)

Equivalent to require name. Returns Qtrue or Qfalse.

API:Defining Structures:

 VALUE rb_struct_define(char*name,char*attribute...,NULL)

Defines a new structure with the given attributes.

 VALUE rb_struct_new(VALUEsClass,VALUEargs...,NULL)

Creates an instance of sClass with the given attribute values.

 VALUE rb_struct_aref(VALUEstruct,VALUEidx)

Returns the element named or indexed by idx.

 VALUE rb_struct_aset(VALUE struct,VALUE idx,VALUE val)

Sets the attribute named or indexed by idx to val.

API:DefiningMethods:

void rb_define_method(VALUE classmod,char*name,VALUE(*func)(),int

argc)

Defines an instance method in the class or module class mod with the

given name,implemented by the C function func and taking argc

arguments.

Void rb_define_alloc_func(VALUE classmod,VALUE(*func)())

Identifies the allocator for classmod.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 51 G Sunil Kumar, Assistant Professor

Void rb_define_module_function(VALUE module,

char*name,VALUE(*func)(),int

argc))

Defines a method in class module with the given name, implemented by

the C function func andtaking argc arguments.

Void rb_define_global_function(char*name,VALUE(*func)(),int argc)

Defines a global function(a private method of Kernel)with the given name,

Implemented by the C function func and taking argc arguments.

API: Defining Variables and Constants:

 Void rb_define_const(VALUEclassmod,char*name,VALUEvalue)

Defines a constant in the class or module classmod,with the given name

and value.

 Void rb_define_global_const(char*name,VALUEvalue)

Defines a global constant with the given name and value.

 Void rb_define_variable(constchar*name,VALUE*object)

Exports the address of the given object that was created in C to the Ruby

name space as name. From Ruby, this will be a global variable, so name

should start with a leading dollar sign .Be sure to honor Ruby’s rules for

allowed variable names; illegally named Variables will not be accessible

from Ruby.

Void rb_define_class_variable(VALUEclass,constchar*name,VALUEval)

Defines a class variable name(which must be specified with a@@ prefix)in

the given class, initialized to value.

void rb_define_virtual_variable(const char *name, VALUE(*getter)(),

void(*setter)())

Exports a virtual variable to a Ruby namespace as the global $name.No

actual storage

Exists for the variable; attempts to get and set the value will call the

given functions with the prototypes.

 API:Calling Methods:

VALUE rb_class_new_instance((intargc,VALUE*argv,VALUEklass))

Return a new instance of classklass.argv is a pointer to an array of argc

parameters.

VALUE rb_funcall(VALUErecv,IDid,intargc,...)

Invokes the method given by id in the object recv with the given number

of arguments argc and the arguments themselves(possibly none).

VALU Erb_funcall2(VALUErecv,IDid,intargc,VALUE*args)

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 52 G Sunil Kumar, Assistant Professor

Invokes the method given by id in the object recv with the given number

of arguments argc and the arguments themselves given in the C array

args.

 VALUErb_funcall3(VALUErecv,IDid,intargc,VALUE*args)

Same as rb_funcall2 but will not call private methods.

API:Exceptions:

Void rb_raise(VALUEexception,constchar*fmt,...)

Raises an exception.The given stringfmt and remainin garguments are

interpreted as with printf.

Void rb_fatal(constchar*fmt,...)

Raises a Fatal exception,terminating the process.No rescue blocks are

called,but Ensure blocks will be called. The given string fmt and

remaining arguments are Interpreted as with printf.

Void rb_bug(constchar*fmt,...)

Terminates the process immediately—no handlers of any sort will be

called.The given String fmt and remaining arguments are interpreted as

with printf.Yous hould call this function only if a fatal bug has been

exposed. You don’t write fatalbugs, do you?

Void rb_sys_fail(constchar*msg)

Raises a platform-specific exception corresponding to the last known

system error,with The given msg.

VALU Erb_protect(VALUE(*body)(),VALUEargs,int*result)

Executes body with the given args and returns nonzero in result if any

exception was raised.

Void rb_notimplement()

Raises a Not Imp Error exception to indicate that the enclosed function is

not implemented yet or not available on this platform.

Void rb_exit(intstatus)

Exits Ruby with the given status. Raises a System Exit exception and

calls registered exit functions and finalizers.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 53 G Sunil Kumar, Assistant Professor

UNIT-3

INTRODUCTION TO PERL AND SCRIPTING

Scripts and programs:

Scripting is the action of writing scripts using a scripting language,

distinguishing neatly between programs, which are written in

conventional programming language such as C, C++, java, and scripts,

which are written using a different kind of language.

We could reasonably argue that the use of scripting languages is just

another kind of programming. Scripting languages are used for is

qualitatively different from conventional programming languages like

C++ and Ada address the problem of developing large applications from

the ground up, employing a team of professional programmers, starting

from well-defined specifications, and meeting specified performance

constraints.

Scripting languages, on other hand, address different problems:

▪ Building applications from ‘off the shelf’ components

▪ Controlling applications that have a programmable interface

▪ Writing programs where speed of development is more important than

run-time efficiency.

The most important difference is that scripting languages in corporate

features that enhance the productivity of the user in one way or another,

making them accessible to people who would not normally describe

themselves as programmers, their primary employment being in some

other capacity. Scripting languages make programmers of us all, to some

extent.

Origin of scripting:

The use of the word ‘script’ in a computing context dates back to the

early1970s, when the originators of the UNIX operating system create the

term ‘shell script’ for sequence of Commands that were to be read from a

file and follow in sequence as if they had been typed in at the

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 54 G Sunil Kumar, Assistant Professor

keyword.e.g.an‘AWKscript’,a‘perl script’etc..the name‘script‘being used

for a text File that was intended to be executed directly rather than being

compiled to a different form of file prior to execution.

Other early occurrences of the term ‘script’ can be found. For example, in

a DOS-based system, use of a dial-up connection to a remote system

required a communication package that used proprietary language to

write scripts to automate the sequence of operations required to

establish a connection to a remote system.

Note that if we regard a scripts as a sequence of commands to control an

application or a device, a configuration file such as a UNIX‘make file’

could be regard as a script.

However, scripts only become interesting when they have the added

value that comes from using programming concepts such as loops and

branches.

Scripting today:

SCRIPTING IS USED WITH 3 DIFFRENT MEANINGS:

1. A new style of programming which allows applications to be developed

much faster than traditional methods allow, and makes it possible for

applications to evolve rapidly to meet changing user requirements. This

style of programming frequently uses a scripting language to

interconnect ‘off the shelf ‘components that are themselves written in

conventional language. Applications built in this way are called ‘glue

applications’, and the language is called a ‘glue language’.

A glue language is a programming language(usually an interpreted

scripting language)that is designed or suited for writing glue code– code

to connect software components. They are especially useful for writing

and maintaining: Custom commands for a command shell Smaller

programs than those that are better implemented in a compiled language

"Wrapper “programs for executable, like a batch file that moves or

manipulates files and does other things with the operating system before

or after running an application like a word processor, spreadsheet, data

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 55 G Sunil Kumar, Assistant Professor

base, assembler, compiler, etc. Scripts that may change Rapid

prototypes of a solution eventually implemented in another, usually

compiled, language.

Glue language examples:

AppleScript

ColdFusion

DCL

 Embeddable Common Lisp

 ecl

 Erlang

JCL

 JScript and JavaScript

 Lua

 m4

 Perl

PHP

 Pure

 Python

Rebol

Rexx

Ruby

 Scheme

 Tcl

 Unix Shell

Scripts (ksh, csh,bash, sh and others)

 VBScript

 Work Flow Language

 Windows PowerShell

 XSLT

2. Using a scripting language to ‘manipulate, customize and automate

the facilities of an existing system’,as the ECMAScript definition puts

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 56 G Sunil Kumar, Assistant Professor

it.Here the script is used to control an application that privides a

programmable interface:this may be an API,though more commonly the

application is construted from a collection of objects whose properties

and methods are exposed to the scripting language.Example: use of

Visual Basic for applications to control the applications in the Microsoft

Office Suite.

3.Using a scripting language with its rich funcationaliy and ease of use

as an alternate to a conventional language for general programming

tasks ,particularly system programming and administration.Examples:

are UNIX system adminstrators have for a long time used scripting

languages for system maintenace tasks,and administrators of WINDOWS

NT systems are adopting a scripting language ,PERL for their work.

Characteristics of scripting languages:

These are some properties of scripting languages which differentiate SL

from programming languages.

Integrated compile and run: SL’s are usually characterized as interpreted

languages, but this is just an over simplification. They operate on an

immediate execution, without need to issue separate command to

compile the program and then to run the resulting object file, and

without the need to link extensive libraries into the object code. This is

done automatically. A few SL’S are indeed implemented as strict

interpreters.

 Low overheads and ease of use:

1. Variables can be declared by use

2. The number of different data types is usually limited

3. Everything is string by context it will be converted as number (vice

versa)

4. Number of data structures is limited (arrays)

 Enhanced functionality enhanced functionality in some areas. For: SL’s

usually have example, most languages provide string manipulation based

on the use of regular expressions, while other languages provide easy

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 57 G Sunil Kumar, Assistant Professor

access to low-level operating system facilities, or to the API, or object

exported by an application.

Efficiency is not an issue: ease of use is achieved at the expense of

effeciency, because efficiency is not an issue in the applications for which

SL’Sare designed.

A scripting language is usually interpreted from source code or bytecode.

By contrast, the software environment the scripts are written for is

typically written in a compiled language and distributed in machine code

form.

Scripting languages may be designed for use by end users of a program –

end-user development–or may be only for internal use by developers, so

they can write portions of the program in the scripting language.

Scripting languages typically use abstraction, a form of information

hiding, to spare users the details of internal variable types, data storage,

and memory management.

Scripts are often created or modified by the person executing them, but

they are also often distributed, such as when large portions of games are

written in a scripting language.

The characteristics of ease of use, particularly the lack of an explicit

compile-link-load sequence, are sometimes taken as the sole definition of

a scripting language.

Users For Scripting Languages:

Users are classified into two types

1. Modern applications

2. Traditional users

Modern applications of scripting languages are:

1. Visual scripting: A collection of visual objects is used to construct a

graphical interface. This process of constructing a graphical interface is

known as visual scripting. The properties of visual objects include text on

button, background and foreground colors. These properties of objects

can be changed by writing program in a suitable language.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 58 G Sunil Kumar, Assistant Professor

The outstanding visual scripting system is visual basic. It is used to

develop new applications. Visual scripting is also used to create

enhanced web pages.

2. Scripting components: In scripting languages we use the idea to

control the scriptable objects belonging to scripting architecture.

Microsoft's visual basic and excel are the first applications that used the

concept of scriptable objects. To support all the applications of microsoft

the concept of scriptable objects was developed.

3. Web scripting: web scripting is classified into three forms. they are

processing forms, dynamic web pages, dynamically generating HTML.

Applications of traditional scripting languages are:

1. System administration,

2. Experimental programming,

3. Controlling applications.

Application areas:

Four main usage areas for scripting languages:

1. Command scripting languages

2. Application scripting languages

3. Markup language

4. Universal scripting languages

1. Command scripting languages are the oldest class of scripting

languages. They appeared in 1960, when a need for programs and tasks

control arised. The most known language from the first generation of

such languages is JCL (Job Control Language), created for IBM OS/360

operating system. Modern examples of such languages include shell

language, described above, and also text-processing languages, such as

sed and awk. These languages were one of the first to directly include

support for regular expression matching - a feature that later was

included into more general-purpose languages, such as Perl.

2. Application scripting languages: Application scripting languages

were developed in 1980s, in the era of personal computers, when such

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 59 G Sunil Kumar, Assistant Professor

important applications as spreadsheets and database clients were

introduced, and interactive session in front of the PC became the norm.

One of the prime examples of these languages is Microsoft-created Visual

Basic language, and especially it’s subset named Visual Basic for

Applications, designed explicitly for office applications programming.

3.Markup languages are a special case in the sense that they are not a

real programming languages, but rather a set of special command words

called ’tags’ used to mark up parts of text documents, that are later used

by special programs called processors, to do all kinds of transformations

to the text, such as displaying it in a browser, or converting it to some

other data format. The basic idea of markup languages is the separation

of contents and structure, and also including formatting commands and

interactive objects into the documents. The first markup language named

GML (Generic Markup Language) was created in 1969 by IBM. In 1986,

ISO created a standard called SGML, based on GML ideas.

4.Universal scripting languages :The languages that belong to this class

are perhaps the most well-known. The very term ”scripting languages” is

associated with them. Most of these languages were originally created for

the Unix environment. The goals however were different.The Perl

programming language was made for report generation, which is even

reflected in its name (Practical Extraction and Report Language). It is

commonly said that the primary reason for it’s enormous popularity is

the ability to write simple and efficient CGI scripts for forming dynamic

web pages with this language. Perl was there in the right place at the

right time. The Python language was originally made as a tool for

accessing system services of the experimental operating system Amoeba.

Later it became a universal object-oriented scripting language.

Implementations exist for the Java Virtual Machine and also for

Microsoft Intermediate Language used on Microsoft .NET platform.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 60 G Sunil Kumar, Assistant Professor

Unlike Perl and Python, which make it easy to write completely

standalone programs, TCL relies heavily on C and C++ extension

modules.

web scripting:

Web is the most fertile areas for the application of scripting languages.

Web scripting divides into three areas

a. processing forms

b. creating pages with enhanced visual effects and user interaction and

c. generating pages ’on the fly’ from material held in database.

Processing Web forms:

In the original implementation of the web , when the form is submitted

for processing, the information entered by the user is encoded and sent

to the server for processing by a CGI script that generates an HTML page

to be sent back to the Web browser.

This processing requires string manipulation to construct the HTML page

that constitutes the replay, and may also require system access, to run

other processes and to establish network connections. Perl is also a

language that uses CGI scripting.

Alternatively for processing the form with script running on the server it

possible to do some client –side processing within the browser to validate

form data before sending it to the server by using JavaScript, VBScript

etc.

Dynamic Web pages:

‘Dynamic HTML’ makes every component of a Webpage (headings,

anchors, tablesetc.) a scriptable object. This makes it possible to provide

simple interaction with the user using scripts written in

JavaScript/Jscript or VBScript, which are interpreted by the browser.

Microsoft’sActiveXtechnologyallowsthecreationofpageswithmoreelaborate

user interaction by using embedded visual objects called ActiveX

controls. These controls are scriptable objects, and can in fact be

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 61 G Sunil Kumar, Assistant Professor

scripted in a variety languages. This can be scripted by using Perl

scripting engine.

Dynamically generated HTML:

Another form of dynamic Webpage is one in which some or all of the

HTML is generated by scripts executed on the server. A common

application of the technique is to construct pages whose content is

retrieved from a database. For example, Microsoft’s IIS web server

Implements Active Server Pages(ASP),which in corporate scripts in

Jscriptor VBScript.

The universe of scripting languages:

Scripting can be traditional or modern scripting, and Web scripting forms

an important part of modern scripting. Scripting universe contains

multiple overlapping worlds:

 the original UNIX world of traditional scripting using Perl and Tcl

 the Microsoft world of Visual Basic and Active controls

 the world of VBA for scripting compound documents

 the world of client-side and server-side Web scripting.

The overlap is complex, for example web scripting can be done in

VBScript, Java Script/Jscript, Perl or Tcl. This universe has been

enlarged as Perl and Tcl are used to implement complex applications for

large organizations e.g Tcl has been used to Develop a major banking

system, and Perl has been used to implement an enterprise�wide

document management system for a leading aerospace company.

Names and Values in Perl:

Names:

Like any other programming language,Perl manipulates variables which

have name (oridentifier)anda

value:avalueisassignedtoavariablebyanassignmentstatementofthe

form

name=value;

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 62 G Sunil Kumar, Assistant Professor

Variable names resemble nouns inEnglish, and likeEnglish, Perl

distinguishes

between singular and plural nouns.A singular name is associated with a

variable that holds a

singleitemofdata(ascalarvalue),apluralnameisassociatedwithavariablethat

holdsa

collectionofdataitems(anarrayorhash).AnotablecharacteristicofPerlisthatv

ariable

namesstartwithaspecialcharacterthatdenotesthekindofthingthatthenames

tandsfor�scalardata($),array(@),hash(%),subroutine(&)etc.Thesyntaxalso

allowsanamethat

consists of a single non-alphanumeric character after the initial special

character, eg. $$, $?;

such names are usually reserved for the Perl system.

Ifwewriteanassignment,eg.j=j+1,theoccuranceofjontheleftdenotesastorage

location,whilwtheright-

handoccurancedenotesthecontentsofthestoragelocation.We

sometimes referto these as the lvalue and rvalue of the variable:more

preciselywe are

determiningthemeaningoftheidentifierinaleft-contextoraright-

context.Intheassignment

a[j]=a[j]+1,bothoccurancesofjaredeterminedinaright-

context,eventhoughoneofthem

appears on the left of the assignment.

In conventional programming languages, new variables are introduced by

a

declaration, which specifies the name of the new variable and also its

type, which determines

thekindofvaluethatcanbestoredinthevariableand,byimplication,theoperati

onsthatcan

be carried out on that variable.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 63 G Sunil Kumar, Assistant Professor

Scalar data:

Strings and numbers:

In common with many scripting languages, Perl recognizes just two kinds

of scalar

data:stringsandnumbers.Thereisnodistinctionbetweenintergerandrealnu

mbersas

differenttypes.Perlisadynamicallytypedlanguage:thesystemkeepstrackofw

hethera

variablecontainsanumericvalueorastringvalue,andtheuserdoesn'thavetow

orryabout

thedifference between strings and numbers since conversions between

the two kinds of data

are done automatically as required by the context in which they are

used.

Boolean values:

All programming languages need some way ofrepresenting truth values

andPerl is no

exception.Sincescalarvaluesareeithernumbersorstrings,somecoventionisn

eededfor

representing Boolean values, and Perl adopts the simple rule that

numeric zero, "0" and the

empty string (" ") mean false, and anything else means true.

Numeric constants:

Numeric constants can be written in a variety of ways, including specific

notation, octal

and hexadecimal. Although Perl tries to emulate natural human

communication, the common

practiceofusingcommasorspacestobreakupalargeintegerconstantintomea

ningfuldigit

groups cannot be used, since the comma has a syntactic significance in

Perl. Instead,

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 64 G Sunil Kumar, Assistant Professor

underscores can be included in a number literal to improve legibility.

String constants:

String constants can be enclosed in single or double quotes. The string is

terminated by

thefirstnext occurance of thequote which started it, soa single-

quotedstring can include

doublequotesandviceversa.Theq(quote)andqq(doublequote)operatorsallow

youtouse

any character as a quoting character. Thus

q / any string/ or q (any string)

are the sameas

'any string' and qq/ any string / orqq (any string)

are the sameas

"any string"

Variables and assignment:

Assignment:

BorrowingfromC,Perluses'='astheassignmentoperator.Itisimportanttonote

that an assignment statement returns a value, the value assigned. This

permits statements like

$b = 4 + ($a = 3) ;

whichassignsthevalue3to$aandthevalue7to$b.Ifitisrequiredtointerpolatea

variable

value without an intervening space the following syntax, borrowed from

UNIX shell scripts , is

used:

$a = "Java ;

$b = "$ { a }Script"; which gives $b the value "JavaScript".

<STDIN> - a special value:

Whenthe'variable'<STDIN>appearsinacontextwhereascalarvalueis

required,itevaluates toastringcontainingthenext

linefromstandardinput,includingthe

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 65 G Sunil Kumar, Assistant Professor

terminating newline. If there is no input queued,Perl will wait until a line

is typed and the

returnkeypressed.TheemptystringistreatedasfalseinaBooleancontext.If<S

TDIN>

appears on the right-hand side of an assignment to a scalar variable, the

string containing the

inputlineisassignedtothevariablenamedonthe;eft.Ifitappearsinanyothersca

larcontext

thestringisassignedtotheanonymousvariable:thiscanbeaccessedbythenam

e$-:many

operations use it as a default.

Scalar Expressions:

Scalar data items are combined into expressions using operators. Perl

has a lot of

operators,which are ranked in 22 precedence levels. Theseare carefully

chosen so that the

‘obvious’meaning iswhat You get , but theoldadvice stillapplies:if indoubt

,usebrackets to

forcetheorderofevaluation. Inthefollowing sections wedescribe

theavailableoperatorsin

their natural groupings-arithmetic , strings,logical etc .

Arithmetic operators:

Following the principles of ‘no surprises’ Perl provides the usual

Arithmetic operators, including auto-increment and auto-decrement

operators after the

manner of C: note that in

$c= 17 ; $d= ++$c;

The sequence is increment and the assign, whereas in

$c= 17 ; $d = $c++;

The sequence is assign then increment .As C, binary arithmetic

operations can be combined

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 66 G Sunil Kumar, Assistant Professor

with assignment, e.g.

$a += 3;

This adds 3 to $a, being equivalent to

$a =$a + 3;

As in most other languages, unary minus is used to negate a numeric

value; an almost never�used unary plus operator is provided for

completeness.

String Operators

Perl provides very basic operators on strings: most string processing is

one using built-in

functions expressions, as described later.

Unlike many languages use + as a concatenation operator for strings,

Perl uses a period for

this purpose: this lack of overloading means that an operator uniquely

determines the context

forits operands. The other string operatoris x,which is used to replicate

strings, e.g.

$a =”Hello” x 3;

Sets $a to “HelloHelloHello”.

Thecapabilityofcombininganoperatorwithassignmentisextendedtostringop

erations. E.g.

$foo .= “ “ ;

Appends a space to $foo.

Sofar,thingshavebeenboringlyconventionalforthemostpart.However,webeg

into geta

tasteof the real flavorofperlwhenweseehowitadds a littlemagic when

someoperators,

normally used in arithmetic context, are used in a string context.

Two examples illustrate this.

1.Auto increment :

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 67 G Sunil Kumar, Assistant Professor

If a variable hasonly ever beenused in a stringcontext, theauto increment

operator can be

applied

toit.Ifthevalueconsistsofasequenceofletters,orasequenceoflettersfollowedb

y

a sequenceof digits,theauto increment takesplace in stringmode starting

withthe right

most character, with ‘carry’ along the string. For example, the sequence

$a = ‘a0’ ; $b = ‘Az9’ ;

Print ++$a, ‘ ‘, ++$b;“/n”;

Prints a1Ba0.

2.Unaryminus :

Thishasanunusualeffectonnonnumericvalues.Unaryminusappliedtoastrin

gwhich

startswithaplusorminus characterreturns thesamestring,but

startingwiththeopposite

sign.Unaryminus applie toan identifier returnsa stringconsistsof

minusprefixed tothe

characters oftheidentifiers.Thusifwehaveavariablenamed

$configwiththevalue “foo”,

then –config evaluates thestring“-

foo”.Thisisuseful,forexample,inconstructingcommand

arguments are introduced by –

Comparison operators:

Thevalueofcomparisons

isreturnedas1iftrue,andanemptystring(“”)iffalse,in

accordance with the convention described earlier.

Twofamiliesofcomparisonoperatorsprovide,

onefornumbersandoneforstrings.The

operatoruseddetermines thecontext,andperlconvertstheoperands

asrequiredtomatch

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 68 G Sunil Kumar, Assistant Professor

the operator.

This duality is necessary because a comparison between strings made up

entirely numerical

digits should apply the usualrules for sorting stringsASCII as a collating

sequence, and this may

notgivethesame resultas thenumerical comparison(‘5’<’10’)returns

thevalue trueasa

numerical comparison having been converted into (5<10) where as the

string comparison (‘5’ lt

‘10’)returns false, since10 comesbefore5inthecanonical sort orderforASCII

strings.

The comparison operator (for numbers, cmp for strings), performs a

three way

test,returning -1 for less-than, 0 for equal an +1 for greater-than.

Note that the comparison operators are non associative, so an expression

like

$a>$b>$c

Is erroneous.

logical operators:

The logical operators allows to combine conditions using the usual

logical operations

‘not’(!, not), ‘and’(&&,and) and ‘or’(||,or).Perl implements the ‘and’ and

‘or’ operators in

‘shortcut’mode, i.e evaluation stops as soon as the final result is certain

using the rules false

&&b=false, and true||b=true.

BeforePerl5,onlythe!,&&and||operatorswereprovided.Thenewset,not,and,

or,are

provided partly to increase readability, and partly because their extra-low

precedence makes it

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 69 G Sunil Kumar, Assistant Professor

possible to omit brackets in most circumstances-the precedence ordering

is choosen so that

numericalexpressionscanbecomparedwithouthavingtoenclosetheminbrac

kets,e.g.

Print”OK\n” if $a<10 and $b<12;

Bitwise operators:

The unary tilde(~) applied to a numerical argument performs bitwise

negation on its operand,

generatingtheone’scompliment.Ifappliedtoastringoperanditcomplementsal

lthebitsin

thestring–effectivewayofinvertingalotofbits.Theremainingbitwiseoperators-

&(and),|

(or)and^(exclusiveor)-

havearathercomplicateddefinition.Ifeitheroperandisanumberora

variable that has previously been used as a number, both operands are

converted to integers if

needbe,andthebitwiseoperationtakesplacebetweentheintegers.Ifthebothop

erandsare

strings, and if variables have never been used as numbers, Perl performs

the bitwise operation

between corresponding bits in the two strings, padding the shorter

strings with zeros as

required.

Conditional expressions:

A conditional expression is one whose values is choosen from two

alternatives at run-time

depending on the outcome of a test. The syntax is borrowed from C:

Test ? true_exp: false_exp

The first expression is evaluated as Boolean value : if it returns true the

whole expression is

replaced by true_exp,otherwise it is replaced by false_exp, e.g.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 70 G Sunil Kumar, Assistant Professor

$a= ($a<0)? 0 : $a;

1.8.4 Control structures:

TheControlStructuresforconditionalexecutionand repetition all the

control

mechanisms is similar to C.

1. BLOCKS:

A block isasequencei\ofoneormorestatementsenclosedincurlybraces.

Eg: { $positive=1;

$negative=-1;}

The last statement is the block terminated by the closing brace.

In, Perl they use conditionsto control the evaluation of one or more

blocks.Blocks can

appearalmostanywhere thatastatement

canappearsuchablockcalledbareblock.

2. CONDITIONS:

A condition is a Perl expression which is evaluated in a Boolean context:

if it

evaluates to zero or the empty string the condition is false, otherwise it is

true.

Conditions usually make use of relational operators.

Eg: $total>50

$total>50 and $total<100

Simple Conditions can be combined into a complex condition using the

logical

operators. A condition can be negated using the ! operator.

Eg: !($total>50 and $total<100)

3. CONDITIONAL EXECUTION:

If-then-else statements

if ($total>0){

print “$total\n”-

if ($total>0){

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 71 G Sunil Kumar, Assistant Professor

print “$total\n”

} else {

print “bad total!\n”-

A single statement is a block and requires braces round it. The if

statement requires

that the expression forming the condition is enclosed in brackets. The

construct extends

to multiple selections

Eg: if ($total>70) {

$grade=”A”;

} elsif ($total >50) {

$grade=”B”;

} elsif ($total>40) {

$grade=”C”;

} else {

$grade=”F”;

$total=0;

}

Alternatives to if-then-else

To use a conditional expression in place of an if-then-else construct.

if ($a<0)

($b=0)

else ($b=1)

can be written as

$b= ($a<0)? 0:1;

To use the ‘or’ operator between statements

Eg: open (IN, $ARGV[0] or die

“Can’t open $ARGV*0+\n”;

Statement qualifiers

A single statement(not a block) can be followed by a conditional modifier.

Eg: print“OK\n” if $volts>=1.5;

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 72 G Sunil Kumar, Assistant Professor

print “Weak\n” if $volts>=1.2 and

$volts<1.5;

print“Replace\n” if $volts<1.2;

Code usingConditional expressions,

Eg: print (($volts>=1.5)? “Ok\n”;

(($volts>=1.2)? “Weak\n”;

“Replace\n”));

4. REPETITION:

Repetition mechanisms include both

➢ Testing Loops

➢ Counting Loops

TESTING LOOPS

While ($a! = $b)

if($a>$b){

$a=$a-$b

} else {

$b=$b-$a

}

}

With the if statement, the expression that forms the condition must be

enclosed in

brackets. But now, while can be replaced by until to give the same effect.

Single

statement can use while and until as statement modifiers to improve

readability.

Eg: $a +=2 while $a<$b;

$a+=2until$a>$b;

Here, although the condition is written after the statement, it is

evaluated before the

statement is executed, if the condition is initially false the statement will

be never

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 73 G Sunil Kumar, Assistant Professor

executed.

When the condition is attached to a do loop is same as a statement

modifier, so the

block is executed at least once.

do {

……….

} while $a! = $b;

Counting Loops:

In C,

for ($i= 1;$i<=10;$i++) {

$i_square=$i*$i;

$i_cube=$i**3;

print “$i\t$i_square\t$i_cube\n”;

}

In Perl,

foreach $i (1…10),

$i_square=$i* $i;

$i_cube=$i**3;

print “$i\t$i_square\t$i_cube\n”;

}

LIST, ARRAYS AND HASHES:

LISTS:

 A list is a collection of scalar data items which can be treated as a

whole, and has a temporary existence on the run-time stack.

 It is a collection of variables, constants (numbers or strings)or

expressions, which is to be treated as a whole.

 It is written as a comma-separated sequence of values,

eg:“red”,“green”,“blue”.

 A list often appears in a script enclosed in round brackets. For eg:

(“red” , “green”, “blue”)

 Shorthand notation is acceptable in lists, for eg:

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 74 G Sunil Kumar, Assistant Professor

(1..8)

(“A”..”H” , “O”..”Z”)

 qw(the quick brown fox) is a shorthand for (“the” , ”quick” , ”brown” ,

”fox”).

Arrays and Hashes: These are the collections of scalar data items which

have an assigned

storage space in memory, and can therefore be accessed using a variable

name.

Arrays:

 An array is an ordered collection of data whose comparisions are

identified by an ordinal

index: It is usually the value of an array variable.

 The name of the variable always starts with an @, eg: @days_of_week.

NOTE:Anarraystoresacollection,andListisacollection,Soitisnaturaltoassign

alist

to an array.

Eg: @rainfall = (1.2 , 0.4 , 0.3 , 0.1 , 0 , 0 , 0);

 A list can occur as an element of another list.

Eg: @foo = (1 , 2 , 3, “string”);

@foobar = (4 , 5 , @foo , 6);

The foobar result would be (4 , 5 , 1 , 2 , 3 , “string” , 6);

Hashes:

 An associative array is one in which each element has two components :

a key and a

value, the element being ‘indexed’ by its key.

 Sucharraysareusually

storedinahashtabletofacilitateefficientretrieval,andforthis

reason Perl uses the term hash for an associative array.

 Names of hashes in Perl start with a % character: such a name

establishes a list context.

 The index is a string enclosed in braces(curly brackets).

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 75 G Sunil Kumar, Assistant Professor

Eg: $somehash{aaa} = 123;

$somehash,“$a”- =0; //The key is a the current value of $a.

%anotherhash =%somehash;

Working With Arrays and Lists:

Array Creation:

➢ Array variables are prefixed with the @sign and are populated using

either paranthesis

or the qwoperator.

Eg: @array = (1 , 2 ,”Heelo”);

@array = qw/This is an array/;

➢ In C,C++, Java;Array is acollection of homogeneous elements, whereas;

In Perl, Array is a collection of heterogeneous elements.

Accessing Array Elements:

➢ When accessing an individual element, we have to use the ‘$’ symbol

followed by

variable name along with the index in the square brackets.

Eg: $bar = $foo[2];

$foo[2] = 7;

➢ Agroup of contiguous elements is called a slice , and is accessed using

a simple syntax:

@foo[1..3] is the same as the list ($foo[1], $foo[2], $foo[3])

➢ Aslice can be used as the destination of an assignment,

Eg: @foo*1..3+ = (“hop” , “skip” , “jump”);

➢ Like a slice, a selection can appear on the left of an assignment: this

leads to a useful

idiom for rearranging the elements in a list.

Eg:Toswapthefirsttwoelementsofanarray,wewriteas;

@foo[0 , 1] = @foo[1 , 0];

Manipulating Lists:

Perl provides several built-in functions for list manipulation. Three useful

ones are:

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 76 G Sunil Kumar, Assistant Professor

➢

shiftLIST:ReturnsthefirstitemofLIST,andmovestheremainingitemsdown,re

ducing

the size of LIST by 1.

➢ unshift ARRAY, LIST : The opposite of shift. Puts the items in LIST at

the beginning of

ARRAY, moving the original contents up by the required amount.

➢ pushARRAY, LIST :Similartounshift,but adds the values in

LISTtotheendofARRAY.

Iterating over Lists:

foreach: The foreach loop performs a simple iteration over all the

elements of a list.

Eg: foreach $item (list) {

……………

}

Theblockisexecuted

repeatedlywiththevariables$itemtakingeachvaluefromthelist

in turn. The variable can be omitted, in which case $_ will be used.

ThenaturalPerlidiomformanipulatingallitemsinanarrayis;

foreach (@array){

……..#process $_

}

Working With Hashes:

➢ A hash is a set of key/value pairs.

➢ Hash variables are preceded by a “%” sign.

➢

Torefertoasingleelementofahash,youwillusethehashvariablenamepreceded

by

a ‘$’ sign and followed by the “key” associated with the value in the curly

brackets.

➢ It is also called as associative array.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 77 G Sunil Kumar, Assistant Professor

Creating Hashes:

➢ We can assign a list of key-value pairs to a hash, as, for example,

%foo = (key1, value1, key2, value2, …….);

➢ An alternative syntax is provided using the => operator to associate

key-value pairs,

thus:

%foo= (banana=>‘yellow’,apple=>‘red’,grapes=>‘green’,..........);

Manipulating Hashes:

Perlprovides anumberofbuilt-

infunctionstofacilitatemanipulationofhashes.Ifwehavea

hash called HASH,

➢ keys % HASH returns a list of the keys of the elements in the hash,

and

➢ values % HASH returns a list of the values of the elements in the hash.

Eg: %foo= (banana=>‘yellow’,apple=>‘red’,grapes=>‘green’,..........);

keys % HASH returns banana, apple ,grapes

values % HASH returns yellow, red, green.

These functions provide a convenient way to iterate over the elements of

a hash using foreach:

foreach (keys % HASH) {

process $magic($_)

}

Other useful operators for manipulating hashes are delete and exists.

➢ delete $HASH{$key} removes the element

➢ exists $HASH{$key} returns true.

1.10 Strings, Pattern Matching & Regular Expressions in Perl:

ThemostpowerfulfeaturesofPerlareinitsvastcollectionofstringmanipulation

operators

andfunctions.Perlwouldnotbeaspopularasitistodayinbioinformaticsapplica

tionsifitdid

not contain its flexible and powerful string manipulation capabilities.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 78 G Sunil Kumar, Assistant Professor

String concatenation:

To concatenate two strings together, just use the . dot:

 $a . $b;

 $c=$a.$b;

 $a=$a.$b;

 $a .=$b;

Thefirstexpressionconcatenates$aand$btogether,butthetheresultwasimm

ediatelylost

unlessitissavedtothethirdstring$casincasetwo.If$bismeanttobeappendedt

otheend

of$a,usethe.=operatorwillbemoreconvenient.AsisanyotherassignmentsinP

erl,ifyou

seeanassignmentwrittenthisway$a=$aopexpr,whereopstandsforanyoperat

orandexpr

standsfortherestofthestatement, youcanmakeashorter versionbymoving

theoptothe

front of the assignment, e.g., $a op= expr.

Substring extraction

The counterpart of string concatenation is substring extraction. To

extract the substring at

certain location inside a string, use the substr function:

 $second_char = substr($a, 1, 1);

 $last_char = substr($a, -1, 1);

 $last_three_char = substr($a,-3);

Thefirstargumenttothesubstrfunctionisthesourcestring,thesecondargume

ntisthestart

position of the substring in the source string, and the third argument is

the length of the

substring to extract. The second argument can be negative, and if that

being the case, the start

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 79 G Sunil Kumar, Assistant Professor

positionwillbecountedfromthebackofthesourcestring.Also,thethirdargume

ntcanbe

omitted. In that case, it will run to the end of the source string.

AparticularlyinterestingfeatureinPerlisthatthesubstrfunctioncanbeassign

edintoaswell,

meaning that in addition to string extraction, it can be used as string

replacement:

 substr($a, 1, 1) = 'b'; # change the second character to b

 substr($a, -1) = 'abc'; # replace the last character as abc (i.e., also add

two new letters

bc)

 substr($a, 1, 0) = 'abc'; #insert abc in front of the second character

Substring search

Inordertoprovidethesecondargumenttosubstr,usuallyyouneedtolocatethes

ubstringto

be extracted or replaced first. The index function does the job:

 $loc1 = index($string,"abc");

 $loc2=index($string,"abc",$loc+1);

 print "not found" if $loc2<0;

The index function takes two arguments, the source string to search, and

the substring to be

locatedinsidethesourcestring.It canoptionally takeathirdargumenttomean

thestart

positionofthesearch.Iftheindexfunctionfindsnosubstringinthesourcestring

anymore,

then it returns -1.

Regular expression

Regular expression is a way to write a pattern which describes certain

substrings. In general,

thenumberofpossiblestringsthatcanmatchapatternislarge,thusyouneedto

makeuseof

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 80 G Sunil Kumar, Assistant Professor

theregularexpressiontodescribetheminsteadof listingallpossibilities.

Ifthepossible

substring matches are just one, then maybe the index function is more

efficient.

The following are some basic syntax rules of regular expression:

 Any character except the following special ones stands foritself. Thus

abc matches 'abc',

and xyz matches'xyz'.

 The character . matches any single character. To match it only with the .

character itself,

put an escape \ in front of it, so \. will match only '.', but . will match

anything. To match

the escape character itself, type two of them \\ to escape itself.

Ifinsteadofmatchinganycharacter,youjustwanttomatchasubsetofcharacter

s,put

all of them into brackets [], thus [abc] will match 'a', 'b', or 'c'. It is also

possible to

shorten the listing if characters in a set are consecutive, so [a-z] will

match all lowercase

alphabets,[0-

9]willmatchallsingledigits,etc.Acharactersetcanbenegatedbythe

special^character,thus[^0-9]willmatchanythingbutnumbers,and[^a-

f]willmatch

anything but 'a' through 'f'. Again, if you just want to match the special

symbols

themselves, put an escape in front of them, e.g., \[, \^ and \].

 All the above so far just match single characters. The power of regular

expression lies in

itsabilitytomatchmultiplecharacterswithsomemetasymbols.The*willmatch

0or

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 81 G Sunil Kumar, Assistant Professor

moreoftheprevioussymbol,the+willmatch1ormoreoftheprevioussymbol,an

d?

willmatch0 or1of theprevious symbol.Forexample,a*willmatch

'aaaa...'forany

numberofa's includingnone'', a+willmatch

1ormorea's,anda?willmatchzeroor

onea's.Amorecomplicatedexampleistomatchnumbers,whichcanbewrittent

his

way[0-9]+.Tomatchingrealnumbers,youneedtowrite[0-9]+\.?[0-

9]*.Notethatthe

decimalpointandfractionnumberscanbeomitted,thusweuse?,and*insteado

f+.

Ifyouwanttocombinetworegularexpressionstogether,justwritethemconsecu

tively.

If youwanttouseeitheroneof the two regular expressions,use the |meta

symbol.

Thus,a|bwillmatchaorb,whichisequivalentto[ab],anda+|b+willmatchanys

tring

ofa'sorb's.Thesecondcasecannotbeexpressed usingcharacter

subsetbecause[ab]+

does not mean the same thing as a+|b+.

 Finally, regular expressions can be grouped together with parentheses to

change the

orderoftheirinterpretation.Forexample,a(b|c)dwillmatch'abd'or'acd'.Witho

utthe

parentheses, it would match 'ab' or 'cd'.

Therulesabovearesimple,butittakessomeexperiencetoapplythemsuccessfu

llyonthe

actualsubstringsyouwishtomatch.Therearenobetterwaystolearnthisthansi

mplytowrite

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 82 G Sunil Kumar, Assistant Professor

some regular expressions and see if they match the substrings you have

in mind.

The following are some examples:

 [A-Z][a-z]* will match all words whose first character are capitalized

 [A-Za-z_][A-Za-z0-9_]*willmatchall legalperlvariablenames

 [+-]?[0-9]+\.?[0-9]*([eE][+-]?[0-9]+)? will match scientific numbers

 [acgtACGT]+ will match all DNA strings

 ^>willmatchthe>symbolonlyatthebeginningofastring

 a$ will match the a letter only at the end of a string

In the last two examples above, we introduced another two special

symbols. The ^ which when

notusedinsideacharacter settonegatethecharacter set,

standsforthebeginning ofthe

string.Thus,^>willmatch'>'onlywhenitisthefirstcharacterofthestring.Simila

rly,$insidea

regular expression means the end of the string, so a$ will match 'a'

onlywhen it is the last

character of the string. These are so called anchor symbols.

Anothercommonlyusedanchoris\bwhichstandsfortheboundaryofaword.In

addition,Perl

introducespredefinedcharactersetsforsomecommonlyusedpatterns,thus\

dstandsfor

digitsandisequivalentto[0-

9],\wstandsforwordlettersornumbers,and\sstandsforspace

characters ' ',\t,\n,\r,etc.Thecaptial letter version ofthesenegates

theirmeaning, thus \D

matches non-digit characters, \W matches non-word characters, and \S

matches non�whitespaces. The scientific number pattern above can

therefore be rewritten as:

 [+-]?\d+\.?\d*([eE][+-]?\d+)?

Pattern matching:

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 83 G Sunil Kumar, Assistant Professor

Regular expressions are used in a few Perl statements, and their most

common use is in pattern

matching.Tomatcharegularexpressionpatterninsidea$string,usethestring

operator=~

combines with the pattern matching operator / /:

 $string =~ /\w+/; # match alphanumeric words in $string

 $string =~ /\d+/; # match numbers in $string

Thepatternmatchingoperator//doesnotalterthesource$string.Instead,itju

streturnsa

true or false value to determine if the pattern is found in $string:

 if ($string =~ /\d+/){

print "there are numbers in $string\n";

}

Sometimesnotonlyyouwanttoknowifthepatternexistsinastring,butalsowha

titactually

matched.Inthatcase,usetheparenthesestoindicatethematchedsubstringyo

uwantto

know,andtheywillbeassignedtothespecial$1,$2,...,variablesifthematchissu

ccessful:

 if ($string =~ /(\d+)\s+(\d+)\s+(\d+)/) {

print "first three matched numbers are $1, $2, $3 in $string\n";

}

Notethatallthreenumbersabovemustbefoundforthewholepatterntomatchs

uccessfully,

thus $1, $2 and $3 should be defined when the if statement is true.The

same memory of

matchedsubstringswithintheregularexpressionare\1,\2,\3,etc.So,tocheck

ifthesame

number happened twice in the $string, you can do this:

 if ($string =~ /(\d).+\1/){

print "$1 happened at least twice in $string\n";

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 84 G Sunil Kumar, Assistant Professor

}

You cannot use $1 in the pattern to indicate the previously matched

number because $ means

the end of the line inside the pattern. Use \1 instead.

Pattern substitution:

Inadditiontomatchingapattern,

youcanreplacethematchedsubstringwithanewstring

usingthesubstitutionoperator.Inthiscase,justwritethesubstitutionstringaft

erthepattern

to match andreplace:

 $string =~ s/\d+/0/; # replace a number with zero

 $string =~ s:/:\\:; # replace the forward slash with backward slash

Unlikethepatternmatchingoperator,thesubstitutionoperatordoeschangeth

e$stringifa

matchisfound.Thesecondexampleaboveindicatesthatyoudonotalwaysneed

touse/to

breakthepatternandsubstitutionpartsapart;youcanbasicallyuseanysymbo

lrightafterthe

soperatorastheseparator.Inthesecondcaseabove,

sincewhatwewanttoreplaceisthe

forward slash symbol, using it to indicate the pattern boundary would be

very cumbersome and

need a lot of escape characters:

 $string =~ s/\//\\/; # this is the same but much harder to read

Forpatternmatching,

youcanalsouseanyseparatorbywritingthemwithmoperator,i.e.,

m:/:willmatchtheforward splash symbol.Natually,thesubstitution

stringmay (andoften

does)containthe\1,\2specialmemorysubstringstomeanthejustmatchedsu

bstrings.For

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 85 G Sunil Kumar, Assistant Professor

example, the following will add parentheses around the matched number

in the source $string:

 $string =~ s/(\d+)/(\1)/;

The parentheses in the replacement string have no special meanings,

thus they were just added

to surround the matched number.

Modifiers to pattern matching and substitution:

YoucanaddsomesuffixmodifierstoPerlpatternmatchingorsubstitutionopera

torstotell

them more precisely what you intend to do:

 /g tells Perl to match all existing patterns, thus the following prints all

numbers in

$string

while($string=~/(\d+)/g){

print "$1\n";

}

 $string=~s/\d+/0/g;#replaceallnumbersin$stringwithzero

 /i tells Perl to ignore cases, thus

$string=~/abc/i; # matchesAbC,abC,Abc, etc.

 /m tells perl to ignore newlines, thus

"a\na\na" =~ /a$/m willmatch the last a in the $string, not the a before

the first newline

if /m is not given.

Perl- Subroutines:

APerlsubroutineorfunctionisagroupofstatementsthattogetherperformsatas

k.Youcan

divideupyourcodeintoseparatesubroutines.Howyoudivideupyourcodeamo

ngdifferent

subroutines is up to you, but logically the division usually is so each

function performs a specific

task.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 86 G Sunil Kumar, Assistant Professor

Define and Call a Subroutine

The general form of a subroutine definition in Perl programming

language is as follows −

sub subroutine_nam e{

body of the subroutine

}

The typical way of calling that Perl subroutine is as follows –

subroutine_nam e(list of argum ents);

Let'shavealookintothefollowingexample,whichdefinesasimplefunctionandt

hencallit.

Because Perl compiles your program before executing it, it doesn't matter

where you declare

your

subroutine.

#!/usr/bin/perl

Function definition

sub Hello{

print "Hello, World!\n";

}

Function call

Hello();

When above program is executed, it produces the following result −

Hello, World!

Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other

programming language

and they can be acessed inside the function using the special array @_.

Thus the first argument

to the function is in [0], thesecondisin_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but

passing more than one array or

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 87 G Sunil Kumar, Assistant Professor

hash normally causes them to lose their separate identities.

Passing Lists to Subroutines

Becausethe@_variableisanarray,itcanbeusedtosupplyliststoasubroutine.H

owever,

because of the way in which Perl accepts and parses lists and arrays, it

can be difficult to extract

theindividualelementsfrom@_.Ifyouhavetopassalistalongwithotherscalarar

guments,

then

make list as the last argument as shown below −

#!/usr/bin/perl

Function definition

sub PrintList{

m y @ list = @ _;

print "Given list is @ list\n";

}

$ a = 10;

@ b = (1, 2, 3, 4);

#Functioncallwithlistparameter

PrintList($ a, @ b);

When above program is executed, it produces the following result −

Given list is 10 1 2 3 4

Passing Hashes to Subroutines

Whenyousupplyahashtoasubroutineoroperatorthatacceptsalist,thenhashi

s

automatically

translated into a list of key/value pairs. For example −

#!/usr/bin/perl

Function definition

sub PrintHash{

m y (%hash) = @ _;

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 88 G Sunil Kumar, Assistant Professor

foreach m y $ key (keys %hash){

m y $ value = $ hash{$ key};

print "$ key : $ value\n";

}

}

%hash = ('nam e' => 'Tom ', 'age' => 19);

Function call with hash param eter

PrintHash(%hash);

When above program is executed, it produces the following result −

nam e :Tom

age : 19

Returning Value from a Subroutine

You can return a value from subroutine like you do in any other

programming language. If you are

Not returning a value from a subroutine then what ever calculation is

last performed in a subroutine is automatically also the return value.

You can return arrays and hashes from the subroutine like any scalar

but returning more than one

Array or hash normally causes them to lose their separate identities. So

we will use references explained in the next chapter to return any array

or hash from a function.

Let's try , the following example, which takes a list of numbers and then

returns their average−

#!/usr/bin/perl

Function definition

sub Average{

get total num ber of argum ents passed.

$ n = scalar(@ _);

$ sum = 0;

foreach $ item (@ _){

$sum+=$item;

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 89 G Sunil Kumar, Assistant Professor

}

$average=$sum/$n;

return $average;

}

Function call

$ num = Average(10, 20, 30);

print "Average for the given num bers : $ num \n";

When above program is executed, it produces the following result −

Average for the given num bers : 20

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 90 G Sunil Kumar, Assistant Professor

UNIT- 4

ADVANCED PERL

Finer Points Of Looping:

A loop statement allows us to execute a statement or group of statements

multiple times and following is the general form of a loop statement in

most of the programming languages−

Perl programming language provides the following types of loop to handle

the looping requirements.

Loop Type Description

While loop Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop body.

Until loop repeats a statement or group of statements until a given

condition becomes true. It tests the condition before executing the loop

body.

for loop Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

For each loop The for each loop iterates over a normal list value and sets

the variable VAR to be each element of the list in turn.

do...while loop Like a while statement, except that it tests the condition

at the end of the loop body nested loops You can use one or more loop

inside any another while, for or do..while loop.

Loop Control Statements

Loop control statements change the execution from its normal sequence.

When execution leaves a scope, all automatic objects that were created in

that scope are destroyed.

C supports the following control statements. Click the following links to

check their detail.

Control Statement Description

next statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

last statement Terminates the loop statement and transfers execution

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 91 G Sunil Kumar, Assistant Professor

to the statement immediately following the loop.

continue statement A continue BLOCK, it is always executed just

before the conditional is about to be evaluated

again.

redo statement The redo command restarts the loop block without

evaluating the conditional again. The continue block, if

any, is not executed.

goto statement Perl supports a goto command with three forms: goto

label, goto expr, and goto &name.

#!/usr/local/bin/perl

for(;;)

{

printf"This loop will run forever.\n";

}

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for

loop is traditionally used for this purpose. Since none of the three

expressions that form the for loop are required, you can make an endless

loop by leaving the conditional expression empty.

You can terminate the above infinite loop by pressing the Ctrl + C keys.

When the conditional expression is absent, it is assumed to be true. You

may have an initialization and increment expression, but as a

programmer more commonly use the for (;;) construct to signify an

infinite loop.

Multiple Loop Variables:

For loop can iterate over two or more variables

simultaneously. Eg: for($m=1,$n=1,$m<10,$m++,$n+=2)

{

…….

}

Here (,) operator is a list constructor, it evaluates its left hand argument.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 92 G Sunil Kumar, Assistant Professor

2.2Pack and Unpack:

Pack Function

The pack function evaluates the expressions in LIST and packs them into

a binary

structure specified by EXPR. The format is specified using the characters

shown in Table

below−

pack EXPR, LIST

Each character may be optionally followed by a number, which specifies

a repeat count

for the type of value being packed.that is nibbles, chars, or even bits,

according to the

format. A value of * repeats for as many values remain in LIST. Values

can be

unpacked with the unpack function.

For example, a5 indicates that five letters are expected. b32 indicates

that 32 bits are

expected. h8 indicates that 8 nybbles (or 4 bytes) are expected. P10

indicates that the

structure is 10 bytes long.

Syntax

Following is the simple syntax for this function −

Return Value

 This function returns a packed version of the data in LIST using

TEMPLATE to

determine how it is coded.

Here is the table which gives values to be used in TEMPLATE.

Character Description

A ASCII character string padded with null characters

A ASCII character string padded with spaces

B String of bits, lowest first

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 93 G Sunil Kumar, Assistant Professor

B String of bits, highest first

C A signed character (range usually -128 to 127)

C An unsigned character (usually 8 bits)

D A double-precision floating-point number

F A single-precision floating-point number

H Hexadecimal string, lowest digit first

H Hexadecimal string, highest digit first

I A signed integer

I An unsigned integer

L A signed long integer

L An unsigned long integer

N A short integer in network order

N A long integer in network order

P A pointer to a string

S A signed short integer

S An unsigned short integer

U Convert to uuencode format

#!/usr/bin/perl -w

$bits =pack("c",65);

prints A, which is ASCII

65. print"bits are $bits\n";

$bits =pack("x");

$bits is now a null

chracter. print"bits are

$bits\n";

$bits =pack("sai",255,"T",30);

creates a seven charcter string on most

computers' print"bits are $bits\n";

@array=unpack("sai","$bits");

#Array now contains three elements: 255, T

and 30. print"Array $array[0]\n";

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 94 G Sunil Kumar, Assistant Professor

V A short integer in VAX (little-endian) order

V A long integer in VAX order

X A null byte

X Indicates "go back one byte"

@ Fill with nulls (ASCII 0)

Example

Following is the example code showing its basic usage −

bits are

A bits

are

bits are �T�Array

255

Array T

Array 30

unpack TEMPLATE, STRING

When above code is executed, it produces the following result −

Unpack Function

The unpack function unpacks the binary string STRING using the format

specified in

TEMPLATE. Basically reverses the operation of pack, returning the list of

packed

values according to the supplied format.

You can also prefix any format field with a %<number> to indicate that

you want a 16-

bit checksum of the value of STRING, instead of the value.

Syntax

Following is the simple syntax for this function −

Return Value

This function returns the list of unpacked values.

Here is the table which gives values to be used in TEMPLATE.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 95 G Sunil Kumar, Assistant Professor

print"Array $array[1]\n";

print"Array $array[2]\n";

Character Description

A ASCII character string padded with null characters

A ASCII character string padded with spaces

B String of bits, lowest first

B String of bits, highest first

C A signed character (range usually -128 to 127)

C An unsigned character (usually 8 bits)

D A double-precision floating-point number

F A single-precision floating-point number

H Hexadecimal string, lowest digit first

H Hexadecimal string, highest digit first

I A signed integer

I An unsigned integer

L A signed long integer

L An unsigned long integer

#!/usr/bin/perl -w

$bits =pack("c",65);

prints A, which is ASCII 65.

N A short integer in network order

N A long integer in network order

P A pointer to a string

S A signed short integer

S An unsigned short integer

U Convert to uuencode format

V A short integer in VAX (little-endian) order

V A long integer in VAX order

X A null byte

X Indicates "go back one byte"

@ Fill with nulls (ASCII 0)

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 96 G Sunil Kumar, Assistant Professor

Example:

Following is the example code showing its basic usage −

bits are

A bits

are

bits are �T�Array25

5 Array

T

Array30

When above code is executed, it produces the following result −

print"bits are $bits\n";

$bits =pack("x");

$bits is now a null

chracter. print"bits are

$bits\n";

$bits =pack("sai",255,"T",30);

creates a seven charcter string on most

computers' print"bits are $bits\n";

@array=unpack("sai","$bits");

#Array now contains three elements: 255, A

and 47. print"Array $array[0]\n";

print"Array $array[1]\n";

print"Array $array[2]\n";

open FILEHANDLE,

EXPR open

FILEHANDLE

sysopen FILEHANDLE, FILENAME, MODE,

PERMS sysopen FILEHANDLE,

FILENAME, MODE

open(DATA,"<file.txt");

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 97 G Sunil Kumar, Assistant Professor

#!/usr/bin/perl

open(DATA,"<file.txt")ordie"Couldn't open file file.txt, $!";

2.3Files:

The basics of handling files are simple: you associate a filehandle with an

external

entity (usually a file) and then use a variety of operators and functions

within Perl to

read and update the data stored within the data stream associated with

the filehandle.

A filehandle is a named internal Perl structure that associates a physical

file with a

name. All filehandles are capable of read/write access, so you can read

from and

update any file or device associated with a filehandle. However, when you

associate a

filehandle, you can specify the mode in which the filehandle is opened.

Three basic file handles are - STDIN, STDOUT, and STDERR, which

represent

standard input, standard output and standard error devices respectively.

Opening and Closing Files

There are following two functions with multiple forms, which can be used

to open any

new or existing file in Perl.

Here FILEHANDLE is the file handle returned by the open function and

EXPR is the

expression having file name and mode of opening the file.

Open Function

Following is the syntax to open file.txt in read-only mode. Here less than

< sign

indicates that file has to be opend in read-only mode.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 98 G Sunil Kumar, Assistant Professor

Here DATA is the file handle which will be used to read the file. Here is

the example

which will open a file and will print its content over the screen.

open(DATA,">file.txt")ordie"Couldn't open file file.txt, $!";

open(DATA,"+<file.txt");ordie"Couldn't open file file.txt, $!";

open DATA,"+>file.txt"ordie"Couldn't open file file.txt, $!";

open(DATA,">>file.txt")||die"Couldn't open file file.txt, $!";

open(DATA,"+>>file.txt")||die"Couldn't open file file.txt, $!";

Following is the syntax to open file.txt in writing mode. Here less than >

sign indicates

that file has to be opend in the writing mode.

This example actually truncates (empties) the file before opening it for

writing, which

may not be the desired effect. If you want to open a file for reading and

writing, you can

put a plus sign before the > or < characters.

For example, to open a file for updating without truncating it −

To truncate the file first −

You can open a file in the append mode. In this mode writing point will

be set to the

end of the file.

A double >> opens the file for appending, placing the file pointer at the

end, so that you

can immediately start appending information. However, you can't read

from it unless

you also place a plus sign in front of it −

Following is the table which gives the possible values of different modes.

Entities Definition

while(<DATA>

){ print"$_";

}

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 99 G Sunil Kumar, Assistant Professor

sysopen(DATA,"file.txt", O_RDWR);

sysopen(DATA,"file.txt", O_RDWR|O_TRUNC);

< or r Read Only Access

> or w Creates, Writes, and Truncates

>> or a Writes, Appends, and Creates

+< or r+ Reads and Writes

+> or w+ Reads, Writes, Creates, and Truncates

+>> or a+ Reads, Writes, Appends, and Creates

Sysopen Function

The sysopen function is similar to the main open function, except that it

uses

the system open() function, using the parameters supplied to it as the

parameters for

the system function −

For example, to open a file for updating, emulating the +<filename format

from open −

Or to truncate the file before updating −

You can use O_CREAT to create a new file and O_WRONLY- to open file

in write only

mode and O_RDONLY - to open file in read only mode.

The PERMS argument specifies the file permissions for the file specified if

it has to be

created. By default it takes 0x666.

Following is the table, which gives the possible values of MODE.

close

FILEHANDLE

close

close(DATA)||die"Couldn't close file properly";

Entities Definition

O_RDWR Read and Write

O_RDONLY Read Only

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 100 G Sunil Kumar, Assistant Professor

O_WRONLY Write Only

O_CREAT Create the file

O_APPEND Append the file

O_TRUNC Truncate the file

O_EXCL Stops if file already exists

O_NONBLOC

K

Non-Blocking usability

Close Function

To close a filehandle, and therefore disassociate the filehandle from the

corresponding

file, you use the close function. This flushes the filehandle's buffers and

closes the

system's file descriptor.

If no FILEHANDLE is specified, then it closes the currently selected

filehandle. It

returns true only if it could successfully flush the buffers and close the

file.

Reading and Writing Files

#!/usr/bin/perl

print"What is your name?\n";

$name =<STDIN>;

print"Hello

$name\n";

#!/usr/bin/perl

open(DATA,"<import.txt")ordie"Can't open

data"; @lines=<DATA>;

close(DATA);

getc FILEHANDLE

getc

read FILEHANDLE, SCALAR, LENGTH, OFFSET

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 101 G Sunil Kumar, Assistant Professor

Once you have an open filehandle, you need to be able to read and write

information.

There are a number of different ways of reading and writing data into the

file.

The <FILEHANDLE> Operator

The main method of reading the information from an open filehandle is

the

<FILEHANDLE> operator. In a scalar context, it returns a single line from

the filehandle.

For example −

When you use the <FILEHANDLE> operator in a list context, it returns a

list of lines from

the specified filehandle. For example, to import all the lines from a file

into an array −

getc Function

The getc function returns a single character from the specified

FILEHANDLE, or STDIN if

none is specified −

If there was an error, or the filehandle is at end of file, then undef is

returned instead.

read Function

The read function reads a block of information from the buffered

filehandle: This

function is used to read binary data from the file.

print FILEHANDLE LIST

print

LIST

print

print "Hello World!\n";

#!/usr/bin/perl

Open file to read

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 102 G Sunil Kumar, Assistant Professor

open(DATA1,"<file1.txt");

Open new file to write

open(DATA2,">file2.txt");

Copy data from one file to

another. while(<DATA1>)

{

print DATA2 $_;

The length of the data read is defined by LENGTH, and the data is placed

at the start

of SCALAR if no OFFSET is specified. Otherwise data is placed after

OFFSET bytes in

SCALAR. The function returns the number of bytes read on success, zero

at end of

file, or undef if there was an error.

print Function

For all the different methods used for reading information from

filehandles, the main

function for writing information back is the print function.

The print function prints the evaluated value of LIST to FILEHANDLE, or

to the current

output filehandle (STDOUT by default). For example −

Copying Files

Here is the example, which opens an existing file file1.txt and read it line

by line and

generate another copy file file2.txt.

read FILEHANDLE, SCALAR, LENGTH

#!/usr/bin/perl

rename("/usr/test/file1.txt","/usr/test/file2.txt");

#!/usr/bin/perl

unlink("/usr/test/file1.txt");

tell FILEHANDLE

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 103 G Sunil Kumar, Assistant Professor

Renaming a file

Here is an example, which shows how we can rename a file file1.txt to

file2.txt.

Assuming file is available in /usr/test directory.

This function renames the takes two arguments and it just rename

existing file.

Deleting an Existing File

Here is an example, which shows how to delete a file file1.txt using the

unlinkfunction.

Positioning inside a File

You can use to tell function to know the current position of a file and

seekfunction to point

a particular position inside the file.

tell Function

The first requirement is to find your position within a file, which you do

using the tell

function

−

}

close(DATA1

); close(

DATA2);

seek FILEHANDLE, POSITION, WHENCE

seek DATA, 256, 0;

#/usr/bin/perl

my $file

="/usr/test/file1.txt";

my(@description, $size);

if(-e $file)

{

push@description,'binary'if(-B _);

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 104 G Sunil Kumar, Assistant Professor

This returns the position of the file pointer, in bytes, within FILEHANDLE

if specified, or

the current default selected filehandle if none is specified.

seek Function

The seek function positions the file pointer to the specified number of

bytes within a file −

The function uses the fseek system function, and you have the same

ability to position

relative to three different points: the start, the end, and the current

position. You do this

by specifying a value for WHENCE.

Zero sets the positioning relative to the start of the file. For example, the

line sets the

file pointer to the 256th byte in the file.

File Information

You can test certain features very quickly within Perl using a series of

test operators

known collectively as -X tests. For example, to perform a quick test of the

various

permissions on a file, you might use a script like this −

tell

Here is the list of features, which you can check for a file or directory −

Operator Definition

-A Script start time minus file last access time, in days.

-B Is it a binary file?

-C Script start time minus file last inode change time, in days.

-M Script start time minus file modification time, in days.

-O Is the file owned by the real user ID?

-R Is the file readable by the real user ID or real group?

-S Is the file a socket?

-T Is it a text file?

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 105 G Sunil Kumar, Assistant Professor

push@description,'a socket'if(-S _);

push@description,'a text file'if(-T _);

push@description,'a block special file'if(-b _);

push@description,'a character special file'if(-c _);

push@description,'a directory'if(-d _);

push@description,'executable'if(-x _);

push@description,(($size =-s _))?"$size

bytes":'empty'; print"$file is ", join(',

',@description),"\n";

}

-W Is the file writable by the real user ID or real group?

-X Is the file executable by the real user ID or real group?

-b Is it a block special file?

-c Is it a character special file?

-d Is the file a directory?

-e Does the file exist?

-f Is it a plain file?

-g Does the file have the setgid bit set?

-k Does the file have the sticky bit set?

-l Is the file a symbolic link?

-o Is the file owned by the effective user ID?

-p Is the file a named pipe?

-r Is the file readable by the effective user or group ID?

-s Returns the size of the file, zero size = empty file.

-t Is the filehandle opened by a TTY (terminal)?

-u Does the file have the setuid bit set?

-w Is the file writable by the effective user or group ID?

-x Is the file executable by the effective user or group ID?

-z Is the file size zero?

2.4EVAL

 The eval operator comes in 2 forms:

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 106 G Sunil Kumar, Assistant Professor

 In the first form ,eval takes an arbitrary string as an operand and

evaluates the

string and executed in the current context.

 The value returned is the value of the last expression evaluated.

 In case of syntax error or runtime error,eval returns the value

“undefined” and

places the error in the variable $@

Ex:

$myvar =’ …’;

….

$value = eval “ \$$myvar “;

 In the second form ,it takes a block as an argument and the block is

compiled

only once. If there is a runtime error,the error is returned in $@.

 Instead of try we use eval and instead of catch we test $@

Ex:

Eval

{

…….

}

If ($@ ne ‘‘)

{

……..

}

2.5Data Structures:

➢ ARRAYS OF ARRAYS

 In perl a two dimensional array is constructed by creating an array of

references to anonymous arrays.

For ex: @colors = ([35,39,43] , [4,5,8] , [32,31,25]) ;

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 107 G Sunil Kumar, Assistant Professor

 The array composer converts each comma-separated list to an

anonymous

array in memory and returns a reference and when we write an exp. Like

$colors [0][1] = 64;

$colors [0] is a reference to an array and 2nd subscript represents the

element

present in that array.

 A two dimensional array can be dynamically created by using PUSH

operator to

add a reference to an anonymous array to the top level array.

 For ex: we are interested in converting a table set of data having white

spaces

between the fields can be converted to two dimensional array by

repeteadly

using split to put the fields of a line into list and then using push to add

the

reference to an array.

While (<STDIN>)

{

Push @table , [split]

}

➢ COMPLEX DATA STRUCTURES

 Not only an array of arrays can be created but we can create hashes of

hashes

,arrays of hashes and hashes of arrays.

 By combining all these possibilities ,data structures of great complexity

can be

created ex: doubly linked list.

 Wecanmakeanelementof

thearrayahashcontainingthreefieldswithkeys‘L’(left

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 108 G Sunil Kumar, Assistant Professor

neighbour) ,’ R’(right neighbour) and ‘C’(content).

 The values related to L and R are references to element hashes and the

value

of C can be anything(scalar,variables,hash ,reference).

Ex:

We can move forwards along the list with

$current = $current->{‘R’}

; And backwards with

$current = $current->{‘L’}

; Create a new element

$new = { L =>undef , R=>undef , C=>…} ;

And we can insert new element after current element as

$new->{‘R’}=$current->{‘R’} ;

$current{‘R’}->{‘L’}= $new;

$current{‘R’}=$new ;

$new->{‘L’} = $current ;

And the current element can be deleted as

$current->{‘L’}->{‘R’} = $current->{‘R’} ;

$current->{‘R’}->{‘L’} = $current->{‘L’} ;

2.6Packages:

 Packages are the basis for libraries,modules and objects.

 It is the unit of code with its own namespace(i.e. separate symbol

table),which

determines bindings of names both at compile-time and run-time.

 Initially code runs in default package main.

 Variables used in a package are global to that package only.

Ex:$A::x is the variable x in

package A. Package A ;

$x = 0;

…….

Package

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 109 G Sunil Kumar, Assistant Professor

B ;

$x = 1 ;

…….

Package

A ;

Print $x;

output: zero.

 The package B declaration switches to a different symbol tablethen the

packageA points to the original symbol table having $x =0;.

 Nested packages can be created of the form A::B provided the variables

should

be of the fully qualified form Ex>$A::B::x.

 A package can have one or more BEGIN routines and also END

routines. Package declaration is rarely used on its own.

2.7Modules:

 Libraries and modules are packages contained within a single file and

are units

of program reusability.

 The power of perl is increased by the usage of modules that provide

functionality

in specific application areas.

 To be fact module is nothing but a package contained in a separate file

whose

name is same as the package name with the extension .pm and makes

use of

built-in-support.

 The use of modules make mathematical routines in the library math.p1

are

converted into a module math.pm and can be written as

Ex: Use math ; at the start of the program and the subroutines are

available .

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 110 G Sunil Kumar, Assistant Professor

 The subroutine names imported are those defined in the export list of

the math

module and it is possible to supress the import of names but loses the

point of the

module.

Ex: use IO : : File ;

 Indicates a requirement for the module File.pm which will be found in a

directory

called IO.

Theuseof“use math (‘sin’ , ‘cos’, ‘tan’)“is same

as BEGIN {

Require “ Math.pm” ;

Math :: import (‘sin’ , ‘cos’ , ‘tan’);

}

 The module names are imported by calling the import() method defined

in the

module. The package writer is free to define import() in any way.

2.8Objects:

Objects in Perl provide a similar functionality as objects in real object

oriented

programming (OOP), but in a different way. They use the same

terminology as OOP,

but the words have different meanings as given below.

 Object: An object with in Perl is a reference to a data type that knows

what class

it belongs to. The object is stored as a reference in a scalar variable. The

object

is said to be blessed into a class: this is done by calling the built in

function

bless in aconstructor.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 111 G Sunil Kumar, Assistant Professor

 Constructor: A constructor is just a subroutine that returns a reference

to an object.

 Class: A class is a package that provides methods to deal with objects

that belong

to it.

 Method: A method is a subroutine that expects an object reference as its

first

argument.

Constructors:

Objects are created by a constructor subroutine which is generally

called new. Eg. Package Animal;

sub new {

my $ref ={

};

bless

ref;

return

ref;

}

The flower brackets { } returns a reference to an anonymous hash. So the

new

constructor returns a reference to an object that is an empty hash, and

knows that it

belongs to the package Animal.

Instances:

We can create the instances for the object with this defined constructor

as

$Dougal = new Animal;

$Ermyntrude = new Animal;

This makes $Dougal and $Ermyntrude references to objects that are

empty

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 112 G Sunil Kumar, Assistant Professor

hashes, and know that they belong to the Animal class.

Method Invocation:

Perl supports two syntactic forms for invoking methods one is by using

arrow operator

and another one is by using Indirect objects. If a class is used to invoke

the method,

that argument will be the name of the class. If an object is used to invoke

the method,

that argument will be the reference to the object. Whichever it is, we'll

call it the

method's invocant. For a class method, the invocant is the name of a

package. For an

instance method, the invocant is a reference that specifies an object.

Method Invocation Using the Arrow Operator:

For example if set_species, get_species are the methods they can be

invoked using

arrow operator as follows.

$Dougal -> set_species ‘Dog’;

$Dougal_is ->= $Dougal->get_species;

Method Invocation Using Indirect Objects:

The methods can be invoked by using indirect objects as given below

set_species $Dougal, ‘Dog’;

$Dougal_is = get _species $Dougal;

Attributes:

Subroutine declarations and definitions may optionally have attribute

lists associated

with them. An attribute is a piece of data belonging to a particular object.

Unlike most

object- oriented languages, Perl provides no special syntax or support for

declaring

and manipulating

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 113 G Sunil Kumar, Assistant Professor

attributes. Attributes are often stored in the object itself. For example, if

the object is an

anonymous hash, we can store the attribute values in the hash using the

attribute name

as the key.

E.g: sub

species { my

$self =shift;

my $was = $self->{‘species’};

- - - - - - - - - -

- - - - - - - -

}

Class Methods And Attributes:

There are operations that are relevant to the class and not need to

operate on a

specific instance are called class methods or static methods.

Similarly attributes that are common to all instances of a class are called

as class

attributes. Class attributes are just package global variables and class

methods are just

subroutines that do not require an object reference as the first argument

e.g the new

constructor.

Inheritance:

Perl only provides method inheritance. Inheritance is realized by

including a special

array @ISA in the package that defines the derived class.

For single inheritance @ISA is an array of one element, the name of the

base class.

Multiple inheritance can be realized by making @Isa an array of more

than one element.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 114 G Sunil Kumar, Assistant Professor

Each element in the array @ISA is the name of the another package that

is being

used as a class.

If a method cannot be found, the packages referenced in @Isa are

recursively searched,

depth first. The current class is derived class and those referenced in

@ISA are the base

classes.

e.g : package Employee;

use Person;

use strict;

our @ISA = qw(Person); # inherits from Person

2.9Interfacing to the OS:

2.10Creating Internet Ware Applications:

The internet is a rich source of information, held on web servers, FTP

servers,

POP/IMAP mail servers, news servers etc. A web browser can access

information on

web servers and FTP servers, and clients access mail and news servers.

however, this

is not the way of to the information: an 'internet-aware' application can

access a server

and collect the information withoutmanual intervention. For suppose

that a website

offers 'lookup' facility in which the user a query by filling in a then clicks

the 'submit'

button . the data from the form in sent to a CGI program on the

server(probably written

in which retrieves the information, formats it as a webpage, and returns

the page to the

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 115 G Sunil Kumar, Assistant Professor

browser. A perl application can establish a connection to the server, send

the request in

the format that the browser would use, collectthe returned HTML and

then extract the

fields that form the answer to the query. In the same way, a perl

application can

establish a connection to a POP3 mail server and send a request which

will reult inthe

server returning a message listing the number of currently unread

messages.

Much of the power of scripting languages comes from the way in which

they hide the

complexity of operations, and this isparticularly the case when we make

use of

specialized modules: tasks that might pages of code in C are achieved in

few lines. The

LWP (library for WWW access in perl) collection of modules is a very good

case in point

it makes the kind of interaction described above almost trivial.The LWP::

simple module

is a interface to web servers.it can be achieved by exploiting modules,

LWP::simple we

can retrieve the contents of a web page in a statement:

use LWP::simple $url=...http://www.somesite.com/index.html..;

$page=get($url);

2.11Dirty Hands Internet Programming:

Modules like LWP: : Simple and LWP: :User Agent meet the needs of most

programmers requiring web access, and there are numerous other

modules for

other types of Internet access.

EX:- Net: : FTP for access to FTP servers

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 116 G Sunil Kumar, Assistant Professor

Some tasks may require a lower level of access to the network, and this

is provided by

Perl both in the form of modules(e.g IO: : Socket) and at an even lower

level by built-in

functions.

Support for network programming in perl is so complete that you can use

the language

to write any conceivable internet application

Access to the internet at this level involves the use of sockets, and we

explain what a

socket is before getting down to details of the programming.

Sockets are network communication channels, providing a bi-directional

channel

between processes on different machines.

Sockets were originally a feature of UNIX:other UNIX systems adopted

them and the

socket became the de facto mechanism of network communication in the

UNIX world.

The popular Winsock provided similar functionality for Windows,

allowing Windows

systems to communicate over the network with UNIX systems, and

sockets are a

built-in feature of Windows 9X and WindowsNT4.

FromthePerlprogrammer’spointanetworksocketcanbetreatedlikeanopenfil

eitis

identified by a you write to it with print, and read it from operator.

The socket interface is based on the TCP/IP protocol suite, so that all

information is

handled automatically.

In TCP a reliable channel, with automatic recovery from data loss or

corruption: for this

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 117 G Sunil Kumar, Assistant Professor

reason a TCP connection is often described as a virtual circuit.

The socket in Perl is an exact mirror of the UNIX and also permits

connections using

UDP (Unreliable Datagram Protocol).

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 118 G Sunil Kumar, Assistant Professor

UNIT-4

TCL

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data

Structures, input/output, procedures , strings , patterns, files, Advance

TCL-eval, source, exec and up level commands, Name spaces, trapping

errors, event driven programs, making applications internet aware, Nuts

and Bolts Internet Programming, Security Issues, C Interface. Tk-Visual

Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and

Binding,Perl-Tk. TCL: TCL stands for “Tool Command Language” and is

pronounced “tickle”; is a simple scripting language for controlling and

extending applications. TCL is a radically simple open-source interpreted

programming language that provides common facilities such as

variables, procedures, and control structures as well as many useful

features that are not found in any other major language. TCL runs on

almost all modern operating systems such as Unix, Macintosh, and

Windows (including Windows Mobile). While TCL is flexible enough to be

used in almost any application imaginable, it does excel in a few key

areas, including: automated interaction with external programs,

embedding as a library into application programs, language design, and

general scripting. TCL was created in 1988 by John Ousterhout and is

distributed under a BSD style license (which allows you everything GPL

does, plus closing your source code). The current stable version, in

February 2008, is 8.5.1 (8.4.18 in the older 8.4 branch). The first major

GUI extension that works with TCL is TK, a toolkit that aims to rapid GUI

development. That is why TCL is now more commonly called TCL/TK.

The language features far-reaching introspection, and the syntax, while

simple2, is very different from the Fortran/Algol/C++/Java world.

Although TCL is a string based language there are quite a few object-

oriented extensions for it like Snit3, incr Tcl4, and XOTcl5 to name a few.

TCL is embeddable: its interpreter is implemented as a library of C

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 119 G Sunil Kumar, Assistant Professor

procedures that can easily be incorporated into applications, and each

application can extend the core TCL features with additional commands

specific to that application. Tcl was originally developed as a reusable

command language for experimental computer aided design (CAD) tools.

The interpreter is implemented as a C library that could be linked into

any application. It is very easy to add new functions to the TCL

interpreter, so it is an ideal reusable "macro language" that can be

integrated into many applications. However, TCL is a programming

language in its own right, which can be roughly described as a cross-

breed between  LISP/Scheme (mainly for its tail-recursion capabilities)

 C (control structure keywords, expr syntax) and  Unix shells (but with

more powerful structuring). 117 | P a g e TCL Structure The TCL

language has a tiny syntax - there is only a single command structure,

and a set of rules to determine how to interpret the commands. Other

languages have special syntaxes for control structures (if, while, repeat...)

- not so in TCL. All such structures are implemented as commands.

There is a runtime library of compiled ’C’ routines, and the ’level’ of the

GUI interface is quite high. Comments: If the first character of a

command is #, it is a comment. TCL commands: TCL commands are just

words separated by spaces. Commands return strings, and arguments

are just further words. command argument command argument Spaces

are important expr 5*3 has a single argument expr 5 * 3 has three

arguments TCL commands are separated by a new line, or a semicolon,

and arrays are indexed by text set a(a\ text\ index) 4 Syntax Syntax is

just the rules how a language is structured. A simple syntax of English

could say(Ignoring punctuation for the moment) A text consists of one or

more sentences A sentence consists of one or more words' Simple as this

is, it also describes Tcl's syntax very well - if you say "script" for "text",

and "command" for "sentence". There's also the difference that a Tcl word

can again contain a script or a command. So if {$x < 0} {set x 0} is a

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 120 G Sunil Kumar, Assistant Professor

command consisting of three words: if, a condition in braces, a command

(also consisting of three words) in braces. Take this for example is a well-

formed Tcl command: it calls Take (which must have been defined before)

with the three arguments "this", "for", and "example". It is up to the

command how it interprets its arguments, e.g. puts acos(-1) will write the

string "acos(-1)" to the stdout channel, and return the empty string "",

while expr acos(-1) will compute the arc cosine of -1 and return

3.14159265359 (an approximation of Pi), or string length acos(-1) will

invoke the string command, which again dispatches to its length sub-

command, which determines the length of the second argument and

returns 8.A Tcl script is a string that is a sequence of commands,

separated by newlines or semicolons. A command is a string that is a list

of words, separated by blanks. The first word is the name of the

command; the other words 118 | P a g e are passed to it as its

arguments. In Tcl, "everything is a command" - even what in other

languages would be called declaration, definition, or control structure. A

command can interpret its arguments in any way it wants - in particular,

it can implement a different language, like expression. A word is a string

that is a simple word, or one that begins with { and ends with the

matching } (braces), or one that begins with " and ends with the matching

". Braced words are not evaluated by the parser. In quoted words,

substitutions can occur before the command is called: $[A-Za-z0-9_]+

substitutes the value of the given variable. Or, if the variable name

contains characters outside that regular expression, another layer of

bracing helps the parser to get it right puts "Guten Morgen, ${Schuler}!"

If the code would say $Schuler, this would be parsed as the value of

variable $Sch, immediately followed by the constant string üler.(Part of) a

word can be an embedded script: a string in [] brackets whose contents

are evaluated as a script (see above) before the current command is

called.In short: Scripts and commands contain words. Words can again

contain scripts and commands. (This can lead to words more than a page

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 121 G Sunil Kumar, Assistant Professor

long...) Arithmetic and logic expressions are not part of the Tcl language

itself, but the language of the expr command (also used in some

arguments of the if, for, while commands) is basically equivalent to C's

expressions, with infix operators and functions. Rules of TCL The

following rules define the syntax and semantics of the Tcl language: (1)

Commands A Tcl script is a string containing one or more commands.

Semi-colons and newlines are command separators unless quoted as

described below. Close brackets are command terminators during

command substitution (see below) unless quoted. (2) Evaluation A

command is evaluated in two steps. First, the Tcl interpreter breaks the

command into words and performs substitutions as described below.

These substitutions are performed in the same way for all commands.

The first word is used to locate a command procedure to carry out the

command, then all of the words of the command are passed to the

command procedure. The command procedure is free to interpret each of

its words in any way it likes, such as an integer, variable name, list, or

Tcl script. Different commands interpret their words differently. (3)

Words of a command are separated by white space (except for newlines,

which are command separators). 119 | P a g e (4) Double quotes If the

first character of a word is double-quote (") then the word is terminated

by the next double-quote character. If semi-colons, close brackets, or

white space characters (including newlines) appear between the quotes

then they are treated as ordinary characters and included in the word.

Command substitution, variable substitution, and backslash

substitution are performed on the characters between the quotes as

described below. The double-quotes are not retained as part of the word.

(5) Braces If the first character of a word is an open brace ({) then the

word is terminated by the matching close brace (}). Braces nest within

the word: for each additional open brace there must be an additional

close brace (however, if an open brace or close brace within the word is

quoted with a backslash then it is not counted in locating the matching

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 122 G Sunil Kumar, Assistant Professor

close brace). No substitutions are performed on the characters between

the braces except for backslash-newline substitutions described below,

nor do semi-colons, newlines, close brackets, or white space receive any

special interpretation. The word will consist of exactly the characters

between the outer braces, not including the braces themselves. (6)

Command substitution If a word contains an open bracket ([) then Tcl

performs command substitution. To do this it invokes the Tcl interpreter

recursively to process the characters following the open bracket as a Tcl

script. The script may contain any number of commands and must be

terminated by a close bracket (``]). The result of the script (i.e. the result

of its last command) is substituted into the word in place of the brackets

and all of the characters between them. There may be any number of

command substitutions in a single word. Command substitution is not

performed on words enclosed in braces. (7) Variable substitution If a

word contains a dollar-sign ($) then Tcl performs variable substitution:

the dollar-sign and the following characters are replaced in the word by

the value of a variable. Variable substitution may take any of the

following forms: $name Tcl: the Tool Command language Name is the

name of a scalar variable; the name is a sequence of one or more

characters that are a letter, digit, underscore, or namespace separators

(two or more colons). $name(index) Name gives the name of an array

variable and index gives the name of an element within that array. Name

must contain only letters, digits, underscores, and namespace

separators, and may be an empty string. 120 | P a g e Command

substitutions, variable substitutions, and backslash substitutions are

performed on the characters of index. ${name} Name is the name of a

scalar variable. It may contain any characters whatsoever except for

close braces. There may be any number of variable substitutions in a

single word. Variable substitution is not performed on words enclosed in

braces. (8) Backslash substitution If a backslash (\) appears within a

word then backslash substitution occurs. In all cases but those

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 123 G Sunil Kumar, Assistant Professor

described below the backslash is dropped and the following character is

treated as an ordinary character and included in the word. This allows

characters such as double quotes, close brackets, and dollar signs to be

included in words without triggering special processing. The following

table lists the backslash sequences that are handled specially, along with

the value that replaces each sequence. \a Audible alert (bell) (0x7). \b

Backspace (0x8). \f Form feed (0xc). \n Newline (0xa). \r Carriage-return

(0xd). \t Tab (0x9). \v Vertical tab (0xb). \whitespace A single space

character replaces the backslash, newline, and all spaces and tabs after

the newline. This backslash sequence is unique in that it is replaced in a

separate pre-pass before the command is actually parsed. This means

that it will be replaced even when it occurs between braces, and the

resulting space will be treated as a word separator if it isn't in braces or

quotes. 121 | P a g e Contents Literal backslash (\), no special effect.

\ooo The digits ooo (one, two, or three of them) give an eight-bit octal

value for the Unicode character that will be inserted. The upper bits of

the Unicode character will be 0. \xhh The hexadecimal digits hh give an

eight-bit hexadecimal value for the Unicode character that will be

inserted. Any number of hexadecimal digits may be present; however, all

but the last two are ignored (the result is always a one-byte quantity).

The upper bits of the Unicode character will be 0. \uhhhh The

hexadecimal digits hhhh (one, two, three, or four of them) give a sixteen-

bit hexadecimal value for the Unicode character that will be inserted.

Backslash substitution is not performed on words enclosed in braces,

except for backslash newline as described above. (9) Comments If a hash

character (#) appears at a point where Tcl is expecting the first character

of the first word of a command, then the hash character and the

characters that follow it, up through the next newline, are treated as a

comment and ignored. The comment character only has significance

when it appears at the beginning of a command. (10) Order of

substitution Each character is processed exactly once by the Tcl

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 124 G Sunil Kumar, Assistant Professor

interpreter as part of creating the words of a command. For example, if

variable substitution occurs then no further substitutions are performed

on the value of the variable; the value is inserted into the word verbatim.

If command substitution occurs then the nested command is processed

entirely by the recursive call to the Tcl interpreter; no substitutions are

performed before making the recursive call and no additional

substitutions are performed on the result of the nested script.

Substitutions take place from left to right, and each substitution is

evaluated completely before attempting to evaluate the next. Thus, a

sequence like set y [set x 0][incr x][incr x] will always set the variable y to

the value, 012. (11) Substitution and word boundaries Substitutions do

not affect the word boundaries of a command. For example, during

variable substitution the entire value of the variable becomes part of a

single word, even if the variable's value contains spaces. 122 | P a g e

Variables and Data in TCL As noted above, by default, variables defined

inside a procedure are "local" to that procedure. And, the argument

variables of the procedure contain local "copies" of the argument data

used to invoke the procedure. These local variables cannot be seen

elsewhere in the script, and they only exist while the procedure is being

executed. In the "getAvg" procedure above, the local variables created in

the procedure are "n" "r" and "avg". TCL provides two commands to

change the scope of a variable inside a procedure, the "global" command

and the "upvar" command. The "global" command is used to declare that

one or more variables are not local to any procedure. The value of a

global variable will persist until it is explicitly changed. So, a variable

which is declared with the "global" command can be seen and changed

from inside any procedure which also declares that variable with the

"global" command. Variables which are defined outside of any procedure

are automatically global by default. The TCL "global" command declares

that references to a given variable should be global rather than local.

However, the "global" command does not create or set the variable … this

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 125 G Sunil Kumar, Assistant Professor

must be done by other means, most commonly by the TCL "set"

command. For example, here is an adjusted version of our averaging

procedure which saves the input list length in the global variable

"currentLength" so that other parts of the script can access this

information after "getAvgN" is called: proc getAvgN { rList } \ { global

currentLength set currentLength [llength $rList] if {!$currentLength}

{return 0.0} set avg 0.0 foreach r $rList \ { set avg [expr $avg + $r] } set

avg [expr $avg/double($currentLength)] return $avg } 123 | P a g e Then,

this adjusted version "getAvgN" could be used elsewhere as follows global

currentLength set thisList "1.0 2.0 3.0" set a [getAvgN $thisList] puts

"List: $thisList Length: $currentLength Avg: $a" We can also use global

variables as an alternative to procedure arguments. For example, we can

make a version of our averaging application which assumes that the

input list is stored in a global variable called "currentList" proc

getCurrentAvg { } \ { global currentList currentLength set currentLength

[llength $rList] if {!$currentLength} {return 0.0} set avg 0.0 foreach r

$currentList \ { set avg [expr $avg + $r] } set avg [expr

$avg/double($currentLength)] return $avg } Then, this adjusted version

"getCurrentAvg" could be used elsewhere as follows global currentList

currentLength set currentList "1.0 2.0 3.0" set a [getCurrentAvg] puts

"List: $currentList Len: $currentLength Avg: $a" A procedure can use

global variables for persistent storage of information, including the

possibility to test whether the procedure has been called previously; this

is useful for procedures that might need to perform a one-time

initialization. In these cases, a procedure will use a global variable which

is not set anywhere else. This means, the first time the procedure is

called, the global variable will not yet exist (recall that the "global"

statement declares that a variable will be accessed as a global variable,

but it does not define or create the variable itself). 124 | P a g e The TCL

command "info exists" will evaluate to true if the given variable exists.

For example, suppose we wanted to make a version of our procedure

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 126 G Sunil Kumar, Assistant Professor

"getAvg" which keeps an internal count of how many times it has been

called. In this version, we use a global variable named "callCount_getAvg"

to keep track of the number of times "getAvg" is called. Because this

global variable will actually be used to store information for the specific

use of the "getAvg" procedure, we need to choose a global variable name

which will not be used for a similar purpose in some other procedure.

The first time "getAvg" is called, the global variable does not yet exist,

and must be set to zero. proc getAvg { rList } \ { global callCount_getAvg if

{![info exists callCount_getAvg]} \ { set callCount_getAvg 0 } incr

callCount_getAvg puts "getAvg has been called $callCount_getAvg times"

set n [llength $rList] if {!$n} {return 0.0} set avg 0.0 foreach r $rList \ { set

avg [expr $avg + $r] } set avg [expr $avg/double($n)] return $avg } A more

flexible way to manipulate persistent data is to use global arrays rather

than scalar variables. For example, instead of the procedure-specific

scalar variable "callCount_getAvg" used above, we can use a general-

purpose array "callCount()" which could be used to record the call counts

of any number of procedures, by using the procedure name as the array

index. Many nmrWish TCL scripts use global arrays in this fashion, to

simplify the sharing of 125 | P a g e many data values between

procedures. Here is a version of the "getAvg" procedure with the call

count tallied in a global array location … note that an array is declared

global simply by listing its name in a "global" command, exactly as for a

scalar variable; no () parenthesis or index values are used. proc getAvg {

rList } \ { global callCount if {![info exists callCount(getAvg)]} \ { set

callCount(getAvg) 0 } incr callCount(getAvg) puts "getAvg has been used

$callCount(getAvg) times" set n [llength $rList] if {!$n} {return 0.0} set avg

0.0 foreach r $rList \ { set avg [expr $avg + $r] } set avg [expr

$avg/double($n)] return $avg } TCL Variable Scope and the upvar

Command We have already seen that TCL procedures can generate a

return value as a way to pass information back to their caller. And, we

have also seen that global variables can be used to share information

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 127 G Sunil Kumar, Assistant Professor

between parts of a TCL script, and so these also serve as a mechanism

for returning information to a caller. TCL includes the "upvar" command

as a method for a given procedure to change the values of variables in

the scope of its caller. This provides a way for a procedure to provide

additional information to the caller, besides by using the procedure's

return value. 126 | P a g e In the "upvar" scheme, a procedure's caller

provides the names of one or more of its own variables as arguments to

the procedure. The procedure then uses the "upvar" command to map

these variables from the caller onto variables in the procedure. For

example, here the caller passes its variable name "count" as the first

argument to procedure "getNAvg": set count 0 set a [getNAvg count "1.0

2.0 3.0 4.0"] Then, in this version of procedure "getNArg" the "upvar"

command is used to map the first argument value "$nPtr" onto the

procedure's variable called "n" … this means that whenever the

procedure gets or changes the value of variable "n" it will actually be

using the caller's variable "count". proc getNAvg { nPtr rList } \ { upvar

$nPtr n set n [llength $rList] if {!$n} {return 0.0} set avg 0.0 foreach r

$rList \ { set avg [expr $avg + $r] } set avg [expr $avg/double($n)] return

$avg } Control Flow:In Tcl language there are several commands that are

used to alter the flow of a program. When a program is run, its

commands are executed from the top of the source file to the bottom.

One by one. This flow can be altered by specific commands. Commands

can be executed multiple times. Some commands are conditional. They

are executed only if a specific condition is met. The if command The if

command has the following general form: if expr1 ?then? body1 elseif

expr2 ?then? body2 elseif ... ?else? ?bodyN? The if command is used to

check if an expression is true. If it is true, a body of command(s) is then

executed. The body is enclosed by curly brackets. 127 | P a g e The if

command evaluates an expression. The expression must return a

boolean value. In Tcl, 1, yes, true mean true and 0, no, false mean false.

In the above example, the body enclosed by { } characters is always

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 128 G Sunil Kumar, Assistant Professor

executed. The then command is optional. We can use it if we think, it will

make the code more clear. We can use the else command to create a

simple branch. If the expression inside the square brackets following the

if command evaluates to false, the command following the else command

is automatically executed. We have a sex variable. It has "female" string.

The Boolean expression evaluates to false and we get "It is a girl" in the

console. !/usr/bin/tclsh if yes { puts "This message is always shown" }

#!/usr/bin/tclsh if true then { puts "This message is always shown" }

#!/usr/bin/tclsh set sex female if {$sex == "male"} { puts "It is a boy" }

else { puts "It is a girl" } 128 | P a g e $./girlboy.tcl It is a girl We can

create multiple branches using the elseif command. The elseif command

tests for another condition, if and only if the previous condition was not

met. Note that we can use multiple elseif commands in our tests. In the

above script we have a prompt to enter a value. We test the value if it is a

negative number or positive or if it equals to zero. If the first expression

evaluates to false, the second expression is evaluated. If the previous

conditions were not met, then the body following the else commands

would be executed. $./nums.tcl Enter a number: 2 the number is

positive $./nums.tcl Enter a number: 0 #!/usr/bin/tclsh # nums.tcl

puts -nonewline "Enter a number: " flush stdout set a [gets stdin] if {$a <

0} { puts "the number is negative" } elseif { $a == 0 } { puts "the numer is

zero" } else { puts "the number is positive" } 129 | P a g e the numer is

zero $./nums.tcl Enter a number: -3 the number is negative Running

the example multiple times. Switch command The switch command

matches its string argument against each of the pattern arguments in

order. As soon as it finds a pattern that matches the string it evaluates

the following body argument by passing it recursively to the Tcl

interpreter and returns the result of that evaluation. If the last pattern

argument is default then it matches anything. If no pattern argument

matches string and no default is given, then the switch command

returns an empty string. In our script, we prompt for a domain name.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 129 G Sunil Kumar, Assistant Professor

There are several options. If the value equals for example to us the

"United States" string is printed to the console. If the value does not

match to any given value, the default body is executed and unknown is

printed to the console. $./switch_cmd.tcl Select a top level domain

name:sk Slovakia #!/usr/bin/tclsh # switch_cmd.tcl puts -nonewline

"Select a top level domain name:" flush stdout gets stdin domain switch

$domain { us { puts "United States" } de { puts Germany } sk { puts

Slovakia } hu { puts Hungary } default { puts "unknown" } } 130 | P a g e

We have entered sk string to the console and the program responded

with Slovakia. While command: The while command is a control flow

command that allows code to be executed repeatedly based on a given

Boolean condition. The while command executes the commands inside

the block enclosed by curly brackets. The commands are executed each

time the expression is evaluated to true. In the code example, we

calculate the sum of values from a range of numbers. The while loop has

three parts: initialization, testing, and updating. Each execution of the

command is called a cycle. set i 0 We initiate the i variable. It is used as

a counter. The expression inside the curly brackets following the while

command is the second phase, the testing. The commands in the body

are executed, until the expression is evaluated to false. incr i

#!/usr/bin/tclsh # whileloop.tcl set i 0 set sum 0 while { $i < 10 } { incr i

incr sum $i } puts $sum while { $i < 10 } { ... } 131 | P a g e The last, third

phase of the while loop is the updating. The counter is incremented. Note

that improper handling of the while loops may lead to endless cycles.

FOR command:When the number of cycles is know before the loop is

initiated, we can use the for command. In this construct we declare a

counter variable, which is automatically increased or decreased in value

during each repetition of the loop. In this example, we print numbers

0..9 to the console. There are three phases. First, we initiate the counter i

to zero. This phase is done only once. Next comes the condition. If the

condition is met, the command inside the for block is executed. Then

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 130 G Sunil Kumar, Assistant Professor

comes the third phase; the counter is increased. Now we repeat phases 2

and 3 until the condition is not met and the for loop is left. In our case,

when the counter i is equal to 10, the for loop stops executing. $

./forloop.tcl 0 1 2 3 4 5 #!/usr/bin/tclsh for {set i 0} {$i < 10} {incr i} {

puts $i } for {set i 0} {$i < 10} {incr i} { puts $i } 132 | P a g e 6 7 8 9 Here

we see the output of the forloop.tcl script. The foreach command:The

foreach command simplifies traversing over collections of data. It has no

explicit counter. It goes through a list element by element and the

current value is copied to a variable defined in the construct. In this

example, we use the foreach command to go through a list of planets. $

./planets.tcl Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

#!/usr/bin/tclsh set planets { Mercury Venus Earth Mars Jupiter Saturn

Uranus Neptune } foreach planet $planets { puts $planet } foreach planet

$planets { puts $planet } The usage of the foreach command is

straightforward. The planets is the list that we iterate through. The

planet is the temporary variable that has the current value from the list.

The for each command goes through all the planets and prints them to

the console. 133 | P a g e Running the above Tcl script gives this output.

In this script, we iterate througn pairs of values of a list. $./actresses.tcl

Rachel Weiss Scarlett Johansson Jessica Alba Marion Cotillard Jennifer

Connelly This is the output of actresses tcl script #!/usr/bin/tclsh set

actresses { Rachel Weiss Scarlett Johansson Jessica Alba \ Marion

Cotillard Jennifer Connelly} foreach {first second} $actresses { puts "$first

$second" } foreach {first second} $actresses { puts "$first $second" } We

pick two values from the list at each iteration. #!/usr/bin/tclsh foreach i

{ one two three } item {car coins rocks} { puts "$i $item" } 134 | P a g e We

can iterate over two lists in parallel. $./parallel.tcl one car two coins

three rocks This is the output of the parallel.tcl script. The break and

continue commands: The break command can be used to terminate a

block defined by while, for, or switch commands. We define an endless

while loop. We use the break command to get out of this loop. We choose

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 131 G Sunil Kumar, Assistant Professor

a random value from 1 to 30 and print it. If the value equals to 22, we

finish the endless while loop. set r [expr 1 + round(rand()*30)] Here we

calculate a random number between 1..30. The rand() is a built-in Tcl

procedure. It returns a random number from 0 to 0.99999. The rand()*30

returns a random number between 0 to 29.99999. The round() procedure

rounds the final number.$./breakcommand.tcl 28 20 8 8 12 22 .We

might get something like this.The continue command is used to skip a

part of the loop and continue with the next iteration of the loop. It can be

used in combination with for and while commands. In the following

example, we will print a list of numbers that cannot be divided by 2

without a remainder. #!/usr/bin/tclsh while true { set r [expr 1 +

round(rand()*30)] puts -nonewline "$r " if {$r == 22} { break } } puts "" 135

| P a g e We iterate through numbers 1..99 with the while loop. if {$num

% 2 == 0} { continue } If the expression num % 2 returns 0, the number

in question can be divided by 2. The continue command is executed and

the rest of the cycle is skipped. In our case, the last command of the loop

is skipped and the number is not printed to the console. The next

iteration is started. Data Structures The list is the basic Tcl data

structure. A list is simply an ordered collection of stuff; numbers, words,

strings, or other lists. Even commands in Tcl are just lists in which the

first list entry is the name of a proc, and subsequent members of the list

are the arguments to the proc. Lists can be created in several way by

setting a variable to be a list of values set lst {{item 1} {item 2} {item 3}}

with the split command set lst [split "item 1.item 2.item 3" "."] with the

list command. set lst [list "item 1" "item 2" "item 3"] An individual list

member can be accessed with the index command. The brief description

of these commands is list ?arg1? ?arg2? ... ?argN? makes a list of the

arguments split string ?splitChars? Splits the string into a list of items

wherever the splitChars occur in the #!/usr/bin/tclsh set num 0 while {

$num < 100 } { incr num if {$num % 2 == 0} { continue } puts "$num " }

puts "" 136 | P a g e code. SplitChars defaults to being whitespace. Note

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 132 G Sunil Kumar, Assistant Professor

that if there are two or more splitChars then each one will be used

individually to split the string. In other words: split "1234567" "36" would

return the following list: {12 45 7}.lindex list index Returns the index'th

item from the list. Note: lists start from 0, not 1, so the first item is at

index 0, the second item is at index 1, and so on.llength list.Returns the

number of elements in a list.The items in list can be iterated through

using the foreach command.foreach varname list body The foreach

command will execute the body code one time for each list item in list.

On each pass, varname will contain the value of the next list item.In

reality, the above form of foreach is the simple form, but the command is

quite powerful. It will allow you to take more than one variable at a time

from the list: foreach {a b} $listofpairs { ... }. You can even take a variable

at a time from multiple lists! For xample: foreach a $listOfA b $listOfB {

... } Examples Adding and deleting members of a list The commands for

adding and deleting list members are concat ?arg1 arg2 ... argn?

Concatenates the args into a single list. It also eliminates leading and

trailing spaces in the args and adds a single separator space between

args. The argsto concat may be either individual elements, or lists. If an

arg is already a list, the contents of that list is concatenated set x "a b c"

puts "Item at index 2 of the list {$x} is: [lindex $x 2]\n" set y [split

7/4/1776 "/"] puts "We celebrate on the [lindex $y 1]'th day of the

[lindex $y 0]'th month\n" set z [list puts "arg 2 is $y"] puts "A command

resembles: $z\n" set i 0 foreach j $x { puts "$j is item number $i in list x"

incr i } 137 | P a g e with the other args. lappend list Name ?arg1 arg2 ...

argn?Appends the args to the list listName treating each arg as a list

element. linsert list Name index arg1 ?arg2 ... argn?Returns a new list

with the new list elements inserted just before the index th element of

listName. Each element argument will become a separate element of the

new list. If index is less than or equal to zero, then the new elements are

inserted at the beginning of the list. If index has the value end , or if it is

greater than or equal to the number of elements in the list, then the new

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 133 G Sunil Kumar, Assistant Professor

elements are appended to the list. lreplace list Name first last ?arg1 ...

argn?Returns a new list with N elements of listName replaced by the

args. If first is less than or equal to 0, lreplace starts replacing from the

first element of the list.If first is greater than the end of the list, or the

word end, then lreplace behaves like lappend. If there are fewer args than

the number of positions between first and last, then the positions for

which there are no args are deleted. lset varName index newValue The

lset command can be used to set elements of a list directly, instead of

using lreplace. Lists in Tcl are the right data structure to use when you

have an arbitrary number of things, and you'd like to access them

according to their order in the list. In C, you would use an array. In Tcl,

arrays are associated arrays - hash tables, as you'll see in the coming

sections. If you want to have a collection of things, and refer to the Nth

thing (give me the 10th element in this group of numbers), or go through

them in order via foreach. Take a look at the example code, and pay

special attention to the way that sets of characters are grouped into

single list elements. Example set b [list a b {c d e} {f {g h}}] puts "Treated

as a list: $b\n" set b [split "a b {c d e} {f {g h}}"] puts "Transformed by

split: $b\n" set a [concat a b {c d e} {f {g h}}] puts "Concated: $a\n"

lappend a {ij K lm} ; # Note: {ij K lm} is a single element puts "After

lappending: $a\n" 138 | P a g e More list commands - lsearch, lsort,

lrange Lists can be searched with the lsearch command, sorted with the

lsort command, and a range of list entries can be extracted with the

lrange command. lsearch list pattern Searches list for an entry that

matches pattern, and returns the index for the first match, or a -1 if

there is no match. By default, lsearch uses "glob" patterns for matching.

See the section on globbing. lsort list Sorts list and returns a new list in

the sorted order. By default, it sorts the list into alphabetic order. Note

that this command returns the sorted list as a result, instead of sorting

the list in place. If you have a list in a variable, the way to sort it is like

so: set lst [lsort $lst] lrange list first last Returns a list composed of the

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 134 G Sunil Kumar, Assistant Professor

first through last entries in the list. If first is less than or equal to 0, it is

treated as the first list element. If last is end or a value greater than the

number of elements in the list, it is treated as the end. If first is greater

than last then an empty list is returned. Example set b [linsert $a 3 "1 2

3"] # "1 2 3" is a single element ; puts "After linsert at position 3: $b\n"

set b [lreplace $b 3 5 "AA" "BB"] puts "After lreplacing 3 positions with 2

values at position 3: $b\n" set list [list {Washington 1789} {Adams 1797}

{Jefferson 1801} \ {Madison 1809} {Monroe 1817} {Adams 1825}] set x

[lsearch $list Washington*] set y [lsearch $list Madison*] incr x incr y -1

;# Set range to be not-inclusive 139 | P a g e Input / Output Tcl uses

objects called channels to read and write data. The channels can be

created using the open or socket command. There are three standard

channels available to Tcl scripts without explicitly creating them. They

are automatically opened by the OS for each new application. They are

stdin, stdout and stderr. The standard input, stdin, is used by the

scripts to read data. The standard output, stdout, is used by scripts to

write data. The standard error, stderr, is used by scripts to write error

messages.In the first example, we will work with the puts command. It

has the following synopsis: puts ?-nonewline? ?channelId? string The

channelId is the channel where we want to write text. The channelId is

optional. If not specified, the default stdout is assumed. The puts

command writes text to the channel. #!/usr/bin/tclsh puts "Message 1"

puts stdout "Message 2" puts stderr "Message 3" set subsetlist [lrange

$list $x $y] puts "The following presidents served between Washington

and Madison" foreach item $subsetlist { puts "Starting in [lindex $item

1]: President [lindex $item 0] " } set x [lsearch $list Madison*] set srtlist

[lsort $list] set y [lsearch $srtlist Madison*] puts "\n$x Presidents came

before Madison chronologically" puts "$y Presidents came before Madison

alphabetically" puts "Message 1" puts stdout "Message 2" 140 | P a g e If

we do not specify the channelId, we write to stdout by default. This line

does the same thing as the previous one. We only have explicitly specified

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 135 G Sunil Kumar, Assistant Professor

the channelId. We write to the standard error channel. The error

messages go to the terminal by default. $./printing.tcl Message 1

Message 2 Message 3 Example output. The read command: The read

command is used to read data from a channel. The optional argument

specifies the number of characters to read. If omitted, the command

reads all of the data from the channel up to the end. The script reads a

character from the standard input channel and then writes it to the

standard output until it encounters the q character. set c [read stdin 1]

We read one character from the standard input channel (stdin). while {$c

!= "q"} { We continue reading characters until the q is pressed. The gets

command The gets command reads the next line from the channel,

returns everything in the line up to (but #!/usr/bin/tclsh set c [read

stdin 1] while {$c != "q"} { puts -nonewline "$c" set c [read stdin 1] } puts

stderr "Message 3" 141 | P a g e not including) the end-of-line character.

The script asks for input from the user and then prints a message. The

puts command is used to print messages to the terminal. The -no

newline option suppresses the new line character. Tcl buffers output

internally, so characters written with puts may not appear immediately

on the output file or device. The flush command forces the output to

appear immediately. The gets command reads a line from a channel. $

./hello.tcl Enter your name: Jan Hello Jan Sample output of the script.

The pwd and cd commands Tcl has pwd and cd commands, similar to

shell commands. The pwd command returns the current working

directory and the cd command is used to change the working directory.

#!/usr/bin/tclsh set dir [pwd] puts $dir cd .. set dir [pwd] puts $dir

#!/usr/bin/tclsh puts -nonewline "Enter your name: " flush stdout set

name [gets stdin] puts "Hello $name" puts -no newline "Enter your name:

" flush stdout set name [gets stdin] 142 | P a g e In this script, we will

print the current working directory. Then we change the working

directory and print the working directory again. set dir [pwd] The pwd

command returns the current working directory. cd .. We change the

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 136 G Sunil Kumar, Assistant Professor

working directory to the parent of the current directory. We use the cd

command. $./cwd.tcl /home/janbodnar/prog/tcl/io

/home/janbodnar/prog/tcl Sample output. The glob command Tcl has a

glob command which returns the names of the files that match a pattern.

The script prints all files with the .tcl extension to the console. The glob

command returns a list of files that match the *.tcl pattern. We go

through the list of files and print each item of the list to the console. $

./globcmd.tcl attributes.tcl #!/usr/bin/tclsh set files [glob *.tcl] foreach

file $files { puts $file } set files [glob *.tcl] foreach file $files { puts $file }

143 | P a g e allfiles.tcl printing.tcl hello.tcl read.tcl files.tcl globcmd.tcl

write2file.tcl cwd.tcl readfile.tcl isfile.tcl addnumbers.tcl This is a sample

output of the globcmd.tcl script.

 Procedures

A procedure is a code block containing a series of commands. Procedures

are called functions in many programming languages. It is a good

programming practice for procedures to do only one specific task.

Procedures bring modularity to programs. The proper use of procedures

brings the following advantages

 Reducing duplication of code

 Decomposing complex problems into simpler pieces

 Improving clarity of the code

 Reuse of code

 Information hiding

There are two basic types of procedures: built-in procedures and user

defined ones. The built�in procedures are part of the Tcl core language.

For instance, the rand(), sin() and exp() are built-in procedures. The user

defined procedures are procedures created with the proc keyword.The

proc keyword is used to create new Tcl commands. The term procedures

and commands are often used interchangeably. We start with a simple

example.

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 137 G Sunil Kumar, Assistant Professor

#!/usr/bin/tclsh

proc tclver {} {

set v [info tclversion]

puts "This is Tcl version $v"

}

tclve

In this script, we create a simple tclver procedure. The procedure prints

the version of Tcl language. proc tclver {}

{

The new procedure is created with the proc command. The {} characters

reveal that the procedure takes no arguments.

{

set v [info tclversion]

puts "This is Tcl version $v"

}

tclve

This is the body of the tclver procedure. It is executed when we execute

the tclver command. The body of the command lies between the curly

brackets.The procedure is called by specifying its name.

$./version.tcl

This is Tcl version 8.6

Sample output.

Procedure arguments: An argument is a value passed to the procedure.

Procedures can take one or more arguments. If procedures work with

data, we must pass the data to the procedures. In the following example,

we have a procedure which takes one argument.

set v [info tclversion] puts "This is Tcl version $v" } tclver set v [info

tclversion] puts "This is Tcl version $v" } tclver #!/usr/bin/tclsh proc ftc

{f} { return [expr $f * 9 / 5 + 32] } We create a ftc procedure which

transforms Fahrenheit temperature to Celsius temperature. The

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 138 G Sunil Kumar, Assistant Professor

procedure takes one parameter. Its name f will be used in the body of the

procedure. We compute the value of the Celsius temperature. The return

command returns the value to the caller. If the procedure does not

execute an explicit return, then its return value is the value of the last

command executed in the procedure's body.The ftc procedure is

executed. It takes 100 as a parameter. It is the temperature in

Fahrenheit. The returned value is used by the puts command, which

prints it to the console. Output of the example. $./fahrenheit.tcl 212 32

86 Next we will have a procedure which takes two arguments. puts [ftc

100] puts [ftc 0] puts [ftc 30] proc ftc {f} { return [expr $f * 9 / 5 + 32]

puts [ftc 100] #!/usr/bin/tclsh proc maximum {x y} { if {$x > $y} { return

$x } else { return $y } 146 | P a g e The maximum procedure returns the

maximum of two values. The method takes two arguments. Here we

compute which number is greater. We define two variables which are to

be compared. We calculate the maximum of the two variables. This is the

output of the maximum.tcl script. $./maximum.tcl The max of 23, 32 is

32 Variable number of arguments A procedure can take and process

variable number of arguments. For this we use the special arguments

and parameter. #!/usr/bin/tclsh } set a 23 set b 32 set val [maximum $a

$b] puts "The max of $a, $b is $val" proc maximum {x y} { if {$x > $y} {

return $x } else { return $y } set a 23 set b 32 set val [maximum $a $b]

147 | P a g e We define a sum procedure which adds up all its

arguments. The sum procedure has a special args argument. It has a list

of all values passed to the procedure. We call the sum procedure three

times. In the first case, it takes 4 arguments, in the second case 2, in the

last case one. Output of the variable tcl script $./variable.tcl 10 3 proc

sum {args} { set s 0 foreach arg $args { incr s $arg } return $s } puts [sum

1 2 3 4] puts [sum 1 2] puts [sum 4] proc sum {args} { foreach arg $args {

incr s $arg } We go through the list and calculate the sum. puts [sum 1 2

3 4] puts [sum 1 2] puts [sum 4] Implicit arguments The arguments in

Tcl procedures may have implicit values. An implicit value is used if no

SCRIPTING LANGUAGES (CS3208PE)

Dept of CSE, NRCM 139 G Sunil Kumar, Assistant Professor

explicit value is provided. Here we create a power procedure. The

procedure has one argument with an implicit value. We can call the

procedure with one and two arguments. #!/usr/bin/tclsh proc power {a

{b 2}} { if {$b == 2} { return [expr $a * $a] } set value 1 for {set i 0} {$i

	Ruby Arrays
	Example

	Ruby Hashes
	A literal Ruby Hash is created by placing a list of key/value pairs between braces, with either a comma or the sequence => between the key and the value. A trailing comma is ignored.
	Example

	Ruby Ranges:
	A Range represents an interval which is a set of values with a start and an end. Ranges may be constructed using the s..e and s...e literals, or with Range.new.
	Ranges constructed using .. run from the start to the end inclusively. Those created using ... exclude the end value. When used as an iterator, ranges return each value in the sequence.
	A range (1..5) means it includes 1, 2, 3, 4, 5 values and a range (1...5) means it includes 1, 2, 3, 4 values.
	Example

	RUBYGEMS is a standardized packaging and installation framework for libraries and applications, making it easy to locate, install, upgrade, and uninstall Ruby packages.
	It provides users and developers with four main facilities.
	1. A standardized package format
	2. A central repository for hosting packages in this format
	3. Installation and management of multiple, simultaneously installed versions of the same library,
	How It Works?
	Class Methods
	Ruby
	Simple Tk Application and Ruby Widgets
	Q) How to run “Hello, World!” in Tk

	Ruby Widget
	Syntax

	Standard Options
	Widget Specific Options
	Event Bindings
	Examples

	Ruby/Tk Widget Classes
	Standard Configuration Options

